Exp Clin Endocrinol Diabetes 2008; 116(8): 461-467
DOI: 10.1055/s-2007-1004596
Article

© J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Measuring the Effect of a Study Meal on Portal Concentrations of Glucagon-Like Peptide 1 (GLP-1) in Non Diabetic and Diabetic Patients with Liver Cirrhosis: Transjugular Intrahepatic Portosystemic Stent Shunt (TIPSS) as a New Method for Metabolic Measurements

D. Raddatz 1 , W. Nolte 1 , C. Roßbach 1 , U. Leonhardt 1 , A. Buchwald 2 , K. H. Scholz 2 , G. Ramadori 1
  • 1Department of Gastroenterology & Endocrinology, Georg-August-Universität Göttingen, Göttingen, Germany
  • 2Department of Cardiology, Georg-August-Universität Göttingen, Göttingen, Germany
Further Information

Publication History

received 07.06.2007 first decision 17.09.2007

accepted 19.12.2007

Publication Date:
03 September 2008 (online)

Abstract

Background: Diabetes in liver cirrhosis is associated with a blunted insulin response, which might be explained by an impaired release of the incretin hormone glucagon-like peptide 1 (GLP-1) into the portal circulation.

Aims: To investigate basal and stimulated portal venous and peripheral GLP-1 concentrations in non-diabetic (ND) and diabetic (D) patients with liver cirrhosis undergoing transjugular intrahepatic portosystemic stent shunt (TIPSS) implantation.

Patients and Methods: After elective TIPSS portalvenous and peripheral probes were drawn from 10 ND and 10 D patients with stable liver disease during an oral metabolic test and plasma glucose, immunoreactive GLP-1, insulin and C-peptide were measured.

Results: The study meal led to a significant rise in portal GLP-1 levels in ND and D. Basal and stimulated portal GLP-1 concentrations were not significantly different between ND and D. Peripheral GLP-1 did not differ significantly from portal venous levels. Insulin response in ND was more pronounced in the portal blood than in the periphery and was absent in D.

Conclusion: TIPSS allows a direct evaluation of hormonal changes in the portal circulation during an oral metabolic tolerance test. A disturbed GLP-1 secretion does not play a role in blunting the insulin response observed in patients with hepatogenous diabetes.

References

  • 1 Alcantara AI, Morales M, Delgado E, Lopez Delgado MI, Clemente F, Luque MA, Malaisse WJ, Valverde I, Villanueva Penacarrillo ML. Exendin-4 agonist and exendin (9–39) amide antagonist of the GLP-1(7–36) amide effects in liver and muscle.  Arch Biochem Biophys. 1997;  341 1-7
  • 2 Allison ME, Wreghitt T, Palmer CR, Alexander GJ. Evidence for a link between hepatitis C virus infection and diabetes mellitus in a cirrhotic population.  J Hepatol. 1994;  21 1135-1139
  • 3 American Diabetes Association. . The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus: Report of the expert committees on the diagnosis and classification of diabetes mellitus.  Diabetes Care. 1997;  20 1183-1197
  • 4 Angelopoulos N, Papanikolaou G, Noutsou M, Rombopoulos G, Goula A, Tolis G. Glucose metabolism, insulin secretion and insulin sensitivity in juvenile hemochromatosis. A case report and review of the literature.  Exp Clin Endocrinol Diabetes. 2007;  115 192-197
  • 5 Blackmore PF, Mojsov S, Exton JH, Habener JF. Absence of insulinotropic glucagon-like peptide-I (7–37) receptors on isolated rat liver hepatocytes.  FEBS Lett. 1991;  283 7-10
  • 6 Creutzfeldt W. The entero-insular axis in type 2 diabetes–incretins as therapeutic agents.  Exp Clin Endocrinol Diabetes. 2001;  109 ((Suppl 2)) S288-S303
  • 7 Creutzfeldt W, Frerichs H, Sickinger K. Liver diseases and diabetes mellitus.  Prog Liver Dis. 1970;  3 371-407
  • 8 Dardevet D, Moore MC, DiCostanzo CA, Farmer B, Neal DW, Snead W, Lautz M, Cherrington AD. Insulin secretion-independent effects of GLP-1 on canine liver glucose metabolism do not involve portal vein GLP-1 receptors.  Am J Physiol Gastrointest Liver Physiol. 2005;  289 G806-G814
  • 9 Deacon CF, Pridal L, Klarskov L, Olesen M, Holst JJ. Glucagon-like peptide 1 undergoes differential tissue-specific metabolism in the anesthetized pig.  Am J Physiol. 1996;  271 E458-E464
  • 10 Enc FY, Imeryuz N, Akin L, Turoglu T, Dede F, Haklar G, Tekesin N, Bekiroglu N, Yegen BC, Rehfeld JF, Holst JJ, Ulusoy NB. Inhibition of gastric emptying by acarbose is correlated with GLP-1 response and accompanied by CCK release.  Am J Physiol Gastrointest Liver Physiol. 2001;  281 G752-G763
  • 11 Fukase N, Manaka H, Sugiyama K, Takahashi H, Igarashi M, Daimon M, Yamatani K, Tominaga M, Sasaki H. Response of truncated glucagon-like peptide-1 and gastric inhibitory polypeptide to glucose ingestion in non-insulin dependent diabetes mellitus. Effect of sulfonylurea therapy.  Acta Diabetol. 1995;  32 165-169
  • 12 Guckelberger O, Thelen A, Benckert C, Schoebel C, Reuter S, Klupp J, Jonas S, Neuhaus P. Diabetes mellitus is no independent risk factor for perioperative mortality following hepatic resection.  Exp Clin Endocrinol Diabetes. 2006;  114 257-261
  • 13 Hareter A, Hoffmann E, Bode HP, Goke B, Goke R. The positive charge of the imidazole side chain of histidine7 is crucial for GLP-1 action.  Endocr J. 1997;  44 701-705
  • 14 Holst JJ, Burcharth F, Kühl C. Pancreatic glucoregulatory hormones in cirrhosis of the liver: Portal vein concentrations during intravenous glucose tolerance test and in response to a meal.  Diabete Metab. 1980;  6 117-127
  • 15 Hvidberg A, Nielsen MT, Hilsted J, Orskov C, Holst JJ. Effect of glucagon-like peptide-1 (proglucagon 78–107amide) on hepatic glucose production in healthy man.  Metabolism. 1994;  43 104-108
  • 16 John PR, Thuluvath PJ. Outcome of liver transplantation in patients with diabetes mellitus: a case-control study.  Hepatology. 2001;  34 889-895
  • 17 Juhl CB, Hollingdal M, Sturis J, Jakobsen G, Agerso H, Veldhuis J, Porksen N, Schmitz O. Bedtime administration of NN2211, a long-acting GLP-1 derivative, substantially reduces fasting and postprandial glycemia in type 2 diabetes.  Diabetes. 2002;  51 424-429
  • 18 Kruszynska YT, Ghatei MA, Bloom SR, MacIntyre N. Insulin secretion and plasma levels of glucose-dependent insulinotropic peptide and glucagon-like peptide 1 [7–36 amide] after oral glucose in cirrhosis.  Hepatology. 1995;  21 933-941
  • 19 Lugari R, Dell'Anna C, Ugolotti D, Dei Cas A, Barilli AL, Zandomeneghi R, Marani B, Iotti M, Orlandini A, Gnudi A. Effect of nutrient ingestion on glucagon-like peptide 1 (7–36 amide) secretion in human type 1 and type 2 diabetes.  Horm Metab Res. 2000;  32 424-428
  • 20 Meier JJ, Gethmann A, Nauck MA, Gotze O, Schmitz F, Deacon CF, Gallwitz B, Schmidt WE, Holst JJ. The glucagon-like peptide-1 metabolite GLP-1-(9–36) amide reduces postprandial glycemia independently of gastric emptying and insulin secretion in humans.  Am J Physiol Endocrinol Metab. 2006;  290 E1118-E1123
  • 21 Mentlein R, Gallwitz B, Schmidt WE. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7–36) amide, peptide histidine methionine and is responsible for their degradation in human serum.  Eur J Biochem. 1993;  214 829-835
  • 22 Miholic J, Orskov C, Holst JJ, Kotzerke J, Meyer HJ. Emptying of the gastric substitute, glucagon-like peptide-1 (GLP-1), and reactive hypoglycemia after total gastrectomy.  Dig Dis Sci. 1991;  36 1361-1370
  • 23 Moon JI, Barbeito R, Faradji RN, Gaynor JJ, Tzakis AG. Negative impact of new-onset diabetes mellitus on patient and graft survival after liver transplantation: Long-term follow up.  Transplantation. 2006;  82 1625-1628
  • 24 Murphy KG, Dhillo WS, Bloom SR. Gut peptides in the regulation of food intake and energy homeostasis.  Endocr Rev. 2006; 
  • 25 Nakagawa A, Satake H, Nakabayashi H, Nishizawa M, Furuya K, Nakano S, Kigoshi T, Nakayama K, Uchida K. Receptor gene expression of glucagon-like peptide-1, but not glucose-dependent insulinotropic polypeptide, in rat nodose ganglion cells.  Auton Neurosci. 2004;  110 36-43
  • 26 Nauck MA, Heimesaat MM, Behle K, Holst JJ, Nauck MS, Ritzel R, Hufner M, Schmiegel WH. Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers.  J Clin Endocrinol Metab. 2002;  87 1239-1246
  • 27 Nauck MA, Meier JJ, Creutzfeldt W. Incretins and their analogues as new antidiabetic drugs.  Drug News Perspect. 2003;  16 413-422
  • 28 Nauck MA, Niedereichholz U, Ettler R, Holst JJ, Orskov C, Ritzel R, Schmiegel WH. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans.  Am J Physiol. 1997;  273 E981-E988
  • 29 Nishizawa M, Nakabayashi H, Kawai K, Ito T, Kawakami S, Nakagawa A, Niijima A, Uchida K. The hepatic vagal reception of intraportal GLP-1 is via receptor different from the pancreatic GLP-1 receptor.  J Auton Nerv Syst. 2000;  80 14-21
  • 30 Nolte W, Hartmann H, Ramadori G. Glucose metabolism and liver cirrhosis.  Exp Clin Endocrinol Diabetes. 1995a;  103 63-74
  • 31 Nolte W, Munke H, Schindler CG, Figulla HR, Werner G, Leonhardt U, Hartmann H, Ramadori G. Doppler sonographic short- and long-term studies of portal hemodynamics following transjugular intrahepatic portasystemic shunt (TIPSS).  Z Gastroenterol. 1998;  36 491-499
  • 32 Nolte W, Wiltfang JG, Kunert HJ, Thiel A, Geese K, Peters K, Figulla HR, Hartmann H, Ramadori G. Initial clinical experiences with TIPS (transjugular intrahepatic portasystemic stent-shunt).  Leber Magen Darm. 1995b;  25 264-266 , , 269–270.
  • 33 Orskov C, Andreasen J, Holst JJ. All products of proglucagon are elevated in plasma from uremic patients.  J Clin Endocrinol Metab. 1992;  74 379-384
  • 34 Perfetti R, Hui H. The role of GLP-1 in the life and death of pancreatic beta cells.  Horm Metab Res. 2004;  36 804-810
  • 35 Petrides AS, Vogt C, Schulze Berge D, Matthews D, Strohmeyer G. Pathogenesis of glucose intolerance and diabetes mellitus in cirrhosis.  Hepatology. 1994;  19 616-627
  • 36 Pugh RN, Murray Lyon IM, Dawson JL, Pietroni MC, Williams R. Transection of the oesophagus for bleeding oesophageal varices.  Br J Surg. 1973;  60 646-649
  • 37 Qualmann C, Nauck MA, Holst JJ, Orskov C, Creutzfeldt W. Glucagon-like peptide 1 (7–36 amide) secretion in response to luminal sucrose from the upper and lower gut. A study using alpha-glucosidase inhibition (acarbose).  Scand J Gastroenterol. 1995;  30 892-896
  • 38 Raddatz D, Ramadori G. Carbohydrate Metabolism and the Liver: Actual Aspects from Physiology and Disease.  Z Gastroenterol. 2007;  45 51-62
  • 39 Raddatz D, Rossbach C, Buchwald A, Scholz KH, Ramadori G, Nolte W. Fasting hyperglucagonemia in patients with transjugular intrahepatic portosystemic shunts (TIPS).  Exp Clin Endocrinol Diabetes. 2005;  113 268-274
  • 40 Rask E, Olsson T, Soderberg S, Johnson O, Seckl J, Holst JJ, Ahren B. Impaired incretin response after a mixed meal is associated with insulin resistance in nondiabetic men.  Diabetes Care. 2001;  24 1640-1645
  • 41 Ruiz Grande C, Pintado J, Alarcon C, Castilla C, Valverde I, Lopez Novoa JM. Renal catabolism of human glucagon-like peptides 1 and 2.  Can J Physiol Pharmacol. 1990;  68 1568-1573
  • 42 Schirra J, Katschinski M, Weidmann C, Schafer T, Wank U, Arnold R, Goke B. Gastric emptying and release of incretin hormones after glucose ingestion in humans.  J Clin Invest. 1996;  97 92-103
  • 43 Schirra J, Sturm K, Leicht P, Arnold R, Goke B, Katschinski M. Exendin (9–39) amide is an antagonist of glucagon-like peptide-1 (7–36) amide in humans.  J Clin Invest. 1998;  101 1421-1430
  • 44 Siegel EG, Seidenstucker A, Gallwitz B, Schmitz F, Reinecke Luthge A, Kloppel G, Folsch UR, Schmidt WE. Insulin secretion defects in liver cirrhosis can be reversed by glucagon-like peptide-1.  J Endocrinol. 2000;  164 13-19
  • 45 Vaag AA, Holst JJ, Volund A, Beck Nielsen HB. Gut incretin hormones in identical twins discordant for non-insulin-dependent diabetes mellitus (NIDDM)–evidence for decreased glucagon-like peptide 1 secretion during oral glucose ingestion in NIDDM twins.  Eur J Endocrinol. 1996;  135 425-432
  • 46 Villanueva Penacarrillo ML, Delgado E, Trapote MA, Alcantara A, Clemente F, Luque MA, Perea A, Valverde I. Glucagon-like peptide-1 binding to rat hepatic membranes.  J Endocrinol. 1995;  146 183-189
  • 47 Vilsboll T, Krarup T, Deacon CF, Madsbad S, Holst JJ. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients.  Diabetes. 2001;  50 609-613
  • 48 Yu G, Nishimura M, Arawaka S, Levitan D, Zhang L, Tandon A, Song YQ, Rogaeva E, Chen F, Kawarai T, Supala A, Levesque L, Yu H, Yang DS, Holmes E, Milman P, Liang Y, Zhang DM, Xu DH, Sato C, Rogaev E, Smith M, Janus C, Zhang Y, Aebersold R, Farrer LS, Sorbi S, Bruni A, Fraser P, St George Hyslop P. Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing.  Nature. 2000;  407 48-54
  • 49 Zander M, Taskiran M, Toft Nielsen MB, Madsbad S, Holst JJ. Additive glucose-lowering effects of glucagon-like peptide-1 and metformin in type 2 diabetes.  Diabetes Care. 2001;  24 720-725

Correspondence

PD Dr. med. D. Raddatz

Department of Gastroenterology and Endocrinology

Robert-Koch-Str. 40

37075 Göttingen

Germany

Phone: +49/551/39 89 09

Fax: +49/551/3939 20 63

Email: draddat@gwdg.de

    >