Zusammenfassung
In der nuklearmedizinischen Diagnostik der akuten Osteomyelitis stellt die Drei-Phasen-Knochenszintigrafie
aufgrund ihrer hohen Sensitivität nach wie vor die Methode der Wahl dar. Bei nicht
eindeutigem Befund sollte sie durch mit 99mTc in vitro oder in vivo markierte Leukozyten ergänzt werden. Bei der chronischen
Osteomyelitis kann aufgrund des mittlerweile vorliegenden Datenmaterials die FDG-PET
als das zuverlässigste bildgebende Verfahren angesehen werden. Ist sie nicht verfügbar,
sollten bei Lokalisation der Osteomyelitis außerhalb der Wirbelsäule die Drei-Phasen-Knochenszintigrafie,
in vitro oder in vivo markierte Leukozyten, die Galliumszintigrafie oder auch die
Nanokolloidszintigrafie zum Einsatz kommen. Die FDG-PET hat auch in der Diagnostik
der Spondylodiszitis ihre Überlegenheit gegenüber allen anderen bildgebenden Verfahren
bewiesen. Sie wird gefolgt von der Galliumszintigrafie.
Abstract
In diagnosing acute osteomyelitis three-phase bone scintigraphy still represents the
method of choice within the nuclear medicine armamentarium due to its high sensitivity.
If the finding is indeterminate, it should be supplemented by 99mTc-leukocyte scintigraphy either with in vitro or in vivo labelled leukocytes. Based
on data available so far, FDG-PET can meanwhile be considered as the most reliable
imaging procedure in chronic osteomyelitis. If it is not available, three-phase bone
scintigraphy, in vitro or in vivo labelled leukocytes, gallium or nanocolloid scintigraphy
should be applied in non-spinal osteomyelitis. FDG-PET has proven its superiority
over all the other imaging methods in spinal infection as well. It is followed by
gallium scintigraphy.
Schlüsselwörter
Osteomyelitis - Spondylodiszitis - Szintigrafie - FDG - PET - markierte Leukozyten
- Gallium
Key words
osteomyelitis - spinal infection - scintigraphy - FDG - PET - labelled leukocytes
- gallium
Literatur
- 1 Joppich I. Leitlinien der Deutschen Gesellschaft für Kinderchirurgie - Osteomyelitis. In:
Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften: AWMF
Online. AWMF-Leitlinien Register Nr. 006/079 (1999): www.uni-duesseldorf.de/WWW/AWMF/ll/ki-ch079.htm
- 2
Meller J, Siefker U, Becker W.
Nuklearmedizinische Diagnostik erregerbedingter Skeletterkrankungen.
Nuklearmediziner.
2002;
25
238-249
- 3
Genant H K, Bautovich G J, Singh M, Lathrop K A, Harper P V.
Bone-seeking radionuclides: An in vivo study of factors affecting skeletal uptake.
Radiology.
1974;
113
373-382
- 4
Siegel B A, Donovan R L, Alderson P O, Mack G R.
Skeletal uptake of 99mTc-diphosphonate in relation to local bone blood flow.
Radiology.
1976;
120
121-123
- 5
Zimmer A M, Isitman A T, Holmes R A.
Enzymatic inhibition of diphosphonate: A proposed mechanism of tissue uptake.
J Nucl Med.
1975;
16
352-356
- 6
Rosenthall L, Maye M.
Observations in the mechanism of 99mTc-labeled phosphate complex uptake in metabolic bone disease.
Semin Nucl Med.
1976;
6
59-67
- 7
Jones A G, Francis M D, Davis M A.
Bone scanning: Radionuclide reaction mechanisms.
Semin Nucl Med.
1976;
6
3-18
- 8
Tzen K Y, Oster Z H, Wagner Jr H N, Tsan M F.
Role of ironbinding proteins and enhanced capillary permeability in the accumulation
of gallium-67.
J Nucl Med.
1980;
21
31-35
- 9
Hoffer P.
Gallium: Mechanisms.
J Nucl Med.
1980;
21
282-285
- 10
Larson S M.
Mechanisms of localisation of gallium-67 in tumors.
Semin Nucl Med.
1978;
8
193-204
- 11
Vallabhajosula S, Goldsmith S J, Lipszyk H, Chahinian A P, Ohnuma T.
67Ga-transferrin and 67Ga-lactoferrin binding to tumor cells. Specific versus non-specific glycoprotein-cell
interaction.
Eur J Nucl Med.
1983;
8
354-357
- 12
Becker W.
The contribution of nuclear medicine to the patient with infection.
Eur J Nucl Med.
1995;
22
1195-1211
- 13
De Schrijver M, Streule K, Senekowitsch R, Friedrich R.
Scintigraphy of inflammation with nanometer-sized colloidal tracers.
Nucl Med Commun.
1987;
8
895-908
- 14
Corstens F HM, Claessens R AMJ.
Imaging inflammation with human polyclonal immunoglobulin: not looked for, but discovered.
Eur J Nucl Med.
1992;
19
155-158
- 15
Claessens R AMJ, Koenders E B, Boerman O C, Oyen W JG, Borm G F, Van der Meer J WM,
Corstens F HM.
Dissociation of indium from indium-111-labelled diethylenetriamine penta-acetic acid
conjugated non-specific polyclonal human immunoglobulin G in inflammatory foci.
Eur J Nucl Med.
1995;
22
212-219
- 16
Oyen W JG, Claessens R AMJ, van der Meer J WW, Corstens F HM.
Biodistribution and kinetics of radiolabeled proteins in rats with focal infection.
J Nucl Med.
1992;
33
388-394
- 17
McAfee J G, Thakur M L.
Survey of radioactive agents for in vitro labelling of phagocytic leucycytes. 1. Soluble
agents.
J Nucl Med.
1976;
17
145-150
- 18
Thakur M L, Lavender J P, Arnot R N, Silvester D J, Segal A W.
Indium-111-labeled autologous leukocytes in man.
J Nucl Med.
1977;
18
1014-1021
- 19
Thakur M L, Segal A W, Louis L, Welch M J, Hopkins J, Peters T J.
Indium-111-labelled cellular blood components: Mechanisms of labelling and intracellular
location in human neutrophils.
J Nucl Med.
1977;
18
1022-1026
- 20
Peters A M, Danpure H J, Osman S, Hawker R J, Henderson B L, Hodgson H J, Kelly J D,
Neirinckx R D, Lavender J P.
Clinical experience with 99mTc-hexamethylpropyleneamineoxime for labelling leucocytes and imaging inflammation.
Lancet.
1986;
2
946-949
- 21
Neirinckx R D, Canning L R, Piper I M, Nowotnik D P, Pickett R D, Holmes R A, Volkert W A,
Forster A M, Weisner P S, Marriott J A,. et al .
Technetium-99m d,l-HM-PAO: a new radiopharmaceutical for SPECT imaging of regional
cerebral blood perfusion.
J Nucl Med.
1987;
28
191-202
- 22
Costa D C, Lui D, Sinha A K, Jarritt P H, Ell P J.
Intracellular localization of 99Tcm-d,l-HMPAO and 201Tl-DDC in rat brain.
Nucl Med Commun.
1989;
10
459-466
- 23
Ivančević V, Dodig D, Livaković M, Hančević J, Ivančević D.
Comparison of three-phase bone scan, three-phase 99m-Tc-HM-PAO leukocyte scan and
67-gallium scan in chronic bone infection.
Prog Clin Biol Res.
1990;
355
189-198
- 24
Bosslet K, Lüben G, Schwarz A, Hundt E, Harthus H P, Seiler F R, Muhrer C, Kloppel G,
Kayser K, Sedlacek H H.
Immunohistochemical localization and molecular characteristics of three monoclonal
antibody-defined epitopes detectable on carcinoembryonic antigen (CEA).
Int J Cancer.
1985;
36
75-84
- 25
Becker W, Borst U, Fischbach W, Pasurka B, Schäfer R, Börner W.
Kinetic data of in-vivo labeled granulocytes in humans with a murine 99mTc-labeled monoclonal antibody.
Eur J Nucl Med.
1989;
15
361-366
- 26
Becker W.
Entzündungsdiagnostik mit autologen Leukozyten und murinen monoklonalen Antikörpern.
Nuklearmediziner.
1992;
15
273-286
- 27
Berberich R, Hennes P, Alexander C.
Entzündungsnachweis und HAMA-Bildung nach Applikation des monokolonalen Antikörpers
BW250/183.
Nuklearmedizin.
1992;
31
70-73
- 28
Becker W, Goldenberg D M, Wolf F.
The use of monoclonal antibodies and antibody fragments in the imaging of infectious
lesions.
Semin Nucl Med.
1994;
24
142-153
- 29
Hall A V, Solanki K K, Vinjamuri S, Britton K E, Das S S.
Evaluation of the efficacy of 99m-Tc-Infecton, a novel agent for detecting sites of
infection.
J Clin Pathol.
1998;
51
215-219
- 30
Gemmel F, Dumarey N, Palestro C J.
Radionuclide imaging of spinal infections.
Eur J Nucl Med Mol Imaging.
2006;
33
1226-1237
- 31
Lazzeri E, Manca M, Molea N, Marchetti S, Consoli V, Bodei L, Bianchi R, Chinol M,
Paganelli G, Mariani G.
Clinical validation of the avidin/indium-111 biotin approach for imaging infection/inflammation
in orthopaedic patients.
Eur J Nucl Med.
1999;
26
606-614
- 32
Shepherd P R, Kahn B B.
Glucose transporters and insulin action: Implications for insulin resistance and diabetes
mellitus.
N Engl Med J.
1999;
341
248-257
- 33
Waki A, Kato H, Yano R, Sadato N, Yokohama A, Ishii Y, Yonekura Y, Fujibayashi Y.
The importance of glucose transport activity as the rate-limiting step of 2-deoxyglucose
uptake in tumor cells in vitro.
Nucl Med Biol.
1998;
25
593-597
- 34
Airley R, Loncaster J, Davidson S, Bromley M, Roberts S, Patterson A, Hunter R, Stratford I,
West C.
Glucose transporter glut-1 expression correlates with tumor hypoxia and predicts metastasis-free
survival in advanced carcinoma of the cervix.
Clin Cancer Res.
2001;
7
928-934
- 35
Kato H, Takita J, Miyazaki T, Nakajima M, Fukai Y, Masuda N, Fukuchi M, Manda R, Ojima H,
Tsukada K, Kuwano H.
Glut-1 glucose transporter expression in esophageal squamous cell carcinoma is associated
with tumor aggressiveness.
Anticancer Res.
2002;
22
2635-2639
- 36
Kurokawa T, Yoshida Y, Kawahara K, Tsuchida T, Okazawa H, Fujibayashi Y, Yonekura Y,
Kotsuji F.
Expression of GLUT-1 glucose transfer, cellular proliferation activity and grade of
tumor correlate with [F-18]-fluorodeoxyglucose uptake by positron emission tomography
in epithelial tumors of the ovary.
Int J Cancer.
2004;
109
926-932
- 37
Tahara T, Ichiya Y, Kuwabara Y, Otsuka M, Miyake Y, Gunasekera R, Masuda K.
High [18F]-fluorodeoxyglucose uptake in abdominal abscesses: a PET study.
J Comput Assist Tomogr.
1989;
13
829-831
- 38
Sasaki M, Ichiya Y, Kuwabara Y, Otsuka M, Tahara T, Fukumura T, Gunasekera R, Masuda K.
Ringlike uptake of [18F]FDG in brain abscess: a PET study.
J Comput Assist Tomogr.
1990;
14
486-487
- 39
Ichiya Y, Kuwabara Y, Sasaki M, Yoshida T, Akashi Y, Murayama S, Nakamura K, Fukumura T,
Masuda K.
FDG-PET in infectious lesions: The detection and assessment of lesion activity.
Ann Nucl Med.
1996;
10
185-191
- 40
Ishimori T, Saga T, Mamede M, Kobayashi H, Higashi T, Nakamoto Y, Sato N, Konishi J.
Increased (18)F-FDG uptake in a model of inflammation: concanavalin A-mediated lymphocyte activation.
J Nucl Med.
2002;
43
658-663
- 41
Mochizuki T, Tsukamoto E, Kuge Y, Kanegae K, Zhao S, Hikosaka K, Hosokawa M, Kohanawa M,
Tamaki N.
FDG uptake and glucose transporter subtype expressions in experimental tumor and inflammation
models.
J Nucl Med.
2001;
42
1551-1555
- 42
Waldvogel F A, Medoff G, Swartz M N.
Osteomyelitis: A review of clinical features, therapeutic considerations and unusual
aspects.
N Engl Med J.
1970;
282
593-597
- 43
Lew D P, Waldvogel F A.
Current concepts: Osteomyelitis.
N Engl Med J.
1997;
336
999-1007
- 44
Hahn K, Fischer S.
Zum Stellenwert der Knochenszintigraphie in der Pädiatrie.
Nuklearmediziner.
2002;
25
214-224
- 45
Connolly L P, Connolly S A, Drubach L A, Jaramillo D, Treves S T.
Acute hematogenous osteomyelitis of children: assessment of skeletal scintigraphy-based
diagnosis in the era of MRI.
JNucl Med.
2002;
43
1310-1316
- 46
Aigner R M, Fueger G F, Vejda M.
Follow-up of osteomyelitis of infants with systemic serum parameters and bone scintigraphy.
Nuklearmedizin.
1996;
35
116-121
- 47
Becker W.
Differentialindikation für verschiedene radioaktive Arzneimittel bei unterschiedlichen
entzündlichen Erkrankungen.
Nuklearmedizin.
1999;
38
243
- 48
Jones-Jackson L, Walker R, Purnell G, McLaren S G, Skinner R A, Thomas J R, Suva L J,
Anaissie E, Miceli M, Nelson C L, Ferris E J, Smeltzer M S.
Early detection of bone infection and differentiation from post-surgical inflammation
using 2-deoxy-2-[18F]-fluoro-D-glucose positron emission tomography (FDG-PET) in an
animal model.
J Orthop Res.
2005;
23
1484-1489
- 49
Mader J T, Shirtliff M, Calhoun J H.
Staging and staging applications in osteomyelitis.
Clin Infect Dis.
1997;
25
1303-1309
- 50
Termaat M F, Raijmakers P GHM, Scholten H J, Bakker F C, Patka P, Haarman H JTM.
The accuracy of diagnostic imaging for the assessment of chronic osteomyelitis: a
systematic review and meta-analysis.
J Bone Joint Surg [Am].
2005;
87
2464-2471
- 51
Guhlmann A, Brecht-Krauss D, Suger G, Glatting G, Kotzerke J, Kinzl L, Reske S N.
Chronic osteomyelitis: detection with FDG PET and correlation with histopathologic
findings.
Radiology.
1998;
206
749-754
- 52
Zhuang H, Duarte P S, Pourdehand M, Shnier D, Alavi A.
Exclusion of chronic osteomyelitis with F-18 fluorodeoxyglucose positron emission
tomographic imaging.
Clin Nucl Med.
2000;
25
281-284
- 53
Sahlmann C O, Siefker U, Lehmann K, Meller J.
Dual time point 2-[18F]fluoro-2′-deoxyglucose positron emission tomography in chronic
bacterial osteomyelitis.
Nucl Med Commun.
2004;
25
819-823
- 54
Papós M, Barát F, Nárai G, Dillmann J, Láng J, Csernay L.
99mTc HMPAO leukocyte and 99mTc nanocolloid scintigraphy in posttraumatic bone infection.
Clin Nucl Med.
1998;
23
423-428
- 55
Buhl T, Stentzer K, Hede A, Kjaer A, Hesse B.
Bone infection in patients suspected of complicating osteomyelitis: the diagnostic
value of dual isotope bone-granulocyte scintigraphy.
Clin Physiol Funct Imaging.
2005;
25
20-26
- 56
Molina-Murphy I L, Palmer E L, Scott J A, Prince M R, Strauss H W, Rubin R H, Fischman A J.
Polyclonal, nonspecific 111In-IgG scintigraphy in the evaluation of complicated osteomyelitis and septic arthritis.
Q J Nucl Med.
1999;
43
29-37
- 57
Hakim S G, Bruecker C W, Jacobsen H C, Hermes D, Lauer I, Eckerle S, Froehlich A,
Sieg P.
The value of FDG-PET and bone scintigraphy with SPECT in the primary diagnosis and
follow-up of patients with chronic osteomyelitis of the mandible.
Int J Oral Max Surg.
2006;
35
809-816
- 58
Körner T, Kreusch T, Bohuslavizki K H, Brinkmann G, Köhnlein S.
Magnetresonanztomographie (MRT) vs. 3-Phasen-Knochenszintigraphie bei der Diagnostik
und Verlaufskontrolle der Unterkieferosteomyelitis. Magnetic resonance imaging vs.
three-dimensional scintigraphy in the diagnosis and monitoring of mandibular osteomyelitis.
Mund Kiefer Gesichtschir.
1997;
1
3324-327
- 59
Melkun E T, Lewis Jr V L.
Evaluation of (111) indium-labeled autologous leukocyte scintigraphy for the diagnosis of chronic osteomyelitis
in patients with grade IV pressure ulcers, as compared with a standard diagnostic
protocol.
Ann Plas Surg.
2005;
54
633-666
- 60
Poirier J Y, Garin E, Derrien C, Devillers A, Moisan A, Bourguet P, Maugendre D.
Diagnosis of osteomyelitis in the diabetic foot with a 99mTc-HMPAO leucocyte scintigraphy combined with a 99mTc-MDP bone scintigraphy.
Diabetes Metab.
2002;
28
485-490
- 61
Lipman B T, Collier B D, Carrera G F, Timins M E, Erickson S J, Johnson J E, Mitchell J R,
Hoffmann R G, Finger W A, Krasnow A Z, Hellman R S.
Detection of osteomyelitis in the neuropathic foot: nuclear medicine, MRI and conventional
radiography.
Clin Nucl Med.
1998;
23
77-82
- 62
Rubello D, Casara D, Maran A, Avogaro A, Tiengo A, Muzzio P C.
Role of anti-granulocyte Fab′ fragment antibody scintigraphy (LeukoScan) in evaluating
bone infection: acquisition protocol, interpretation criteria and clinical results.
Nucl Med Commun.
2004;
25
39-47
- 63
Dutta P, Bhansali A, Mittal B R, Singh B, Masoodi S R.
Instant 99mTc-ciprofloxacin scintigraphy for the diagnosis of osteomyelitis in the diabetic foot.
Foot Ankle Int.
2006;
27
716-722
- 64
Remedios D, Valabhji J, Oelbaum R, Sharp P, Mitchell R.
99mTc-nanocolloid scintigraphy for assessing osteomyelitis in diabetic neuropathic feet.
Clin Radiol.
1998;
53
120-125
- 65
Sapico F L, Montgomerie J Z.
Pyogenic vertebral osteomyelitis: report of nine cases and review of the literature.
Rev Infect Dis.
1979;
1
754-776
- 66
Ozuna R M, Delamarter R B.
Pyogenic vertebral osteomyelitis and postsurgical disc space infections.
Orthop Clin North Am.
1996;
27
87-94
- 67
Mader J T, Shirtliff M E, Bergquist S C, Calhoun J.
Antimicrobial treatment of chronic osteomyelitis.
Clin Orthop Relat Res.
1999;
360
47-65
- 68
Gratz S, Dörner J, Oestmann J W, Opitz M, Behr T, Meller J, Grabbe E, Becker W.
67Ga-citrate and 99Tcm-MDP for estimating the severity of vertebral osteomyelitis.
Nucl Med Commun.
2000;
21
111-120
- 69
Love C, Patel M, Lonner B S, Tomas M B, Palestro C J.
Diagnosing spinal osteomyelitis: a comparison of bone and Ga-67 scintigraphy and magnetic
resonance imaging.
Clin Nucl Med.
2000;
25
963-977
- 70
Modic M T, Feiglin D H, Piraino D W, Boumphrey F, Weinstein M A, Duchesneau P M, Rehm S.
Vertebral osteomyelitis: assessment using MR.
Radiology.
1985;
157
157-166
- 71
Adatepe M H, Powell O M, Isaacs G H, Nichols K, Cefola R.
Hematogenous pyogenic vertebral osteomyelitis: diagnostic value of radionuclide bone
imaging.
J Nucl Med.
1986;
27
1680-1685
- 72
Palestro C J, Kim C K, Swyer A J, Vallabhajosula S, Goldsmith S J.
Radionuclide diagnosis of vertebral osteomyelitis: indium-111-leukocyte and technetium-99m-methylene
diphosphonate bone scintigraphy.
J Nucl Med.
1991;
32
1861-1865
- 73
Tyrell P N, Cassar-Pullicino V N, McCall I W.
Spinal infection.
Eur Radiol.
1999;
9
1066-1077
- 74
Lin W Y, Tsai S C, Chao T H, Wang S J.
Uptake of gallium-67 citrate in clean surgical incisions after colorectal surgery.
Eur J Nucl Med.
2001;
28
369-372
- 75
Gratz S, Braun H G, Behr T M, Meller J, Herrmann A, Conrad M, Rathmann D, Bertagnoli R,
Willert H G, Becker W.
Photopenia in chronic vertebral osteomyelitis with technetium-99m-antigranulocyte
antibody (BW 250/ 183).
J Nucl Med.
1997;
38
211-2216
- 76
Gratz S, Behr T, Schmitt H A, Wüstner M, Morguet A, Meller J, Becker W.
99mTc labeled antigranulocyte monoclonal antibody Fab′ fragments (Leukoscan®) for diagnostic
imaging of bone and soft tissue infections.
J Nucl Med.
1998;
39
34
- 77
De Winter F, Gemmel F, Van Laere K, De Winter O, Poffijn B, Dierckx R A, Van de Wiele C.
99mTc-Ciprofloxacin planar and tomographic imaging for the diagnosis of infection in
the postoperative spine: experience in 48 patients.
Eur J Nucl Med Mol Imaging.
2004;
31
233-239
- 78
Lazzeri E, Pauwels E KJ, Erba P A, Volterrani D, Manca M, Bodei L, Trippi D, Bottoni A,
Cristofani R, Consoli V, Palestro C J, Mariani G.
Clinical feasibility of two-step streptavidin/(111)In-biotin scintigraphy in patients
with suspected vertebral osteomyelitis.
Eur J Nucl Med Mol Imaging.
2004;
31
1505-1511
- 79
Stumpe K DM, Dazzi H, Schaffner A, Schulthess G K von.
Infection imaging using whole-body FDG-PET.
Eur J Nucl Med.
2000;
27
822-832
- 80
Gratz S, Dörner J, Fischer U, Behr T M, Behe M, Altenvoerde G, Meller J, Grabbe E,
Becker W.
18F-FDG hybrid PET in patients with suspected spondylitis.
Eur J Nucl Med Mol Imaging.
2002;
29
516-524
- 81
Stumpe K D, Zanetti M, Weishaupt D, Hodler J, Boos N, Schulthess G K von.
FDG positron emission tomography for differentiation of degenerative and infectious
endplate abnormalities in the lumbar spine detected on MR imaging.
Am J Roentgenol.
2002;
179
1151-1157
- 82
De Winter F, Gemmel F, Van De Wiele C, Poffijn B, Uyttendaele D, Dierckx R.
18-Fluorine fluorodeoxyglucose positron emission tomography for the diagnosis of infection
in the postoperative spine.
Spine.
2003;
28
1314-1319
- 83
Schiesser M, Stumpe K D, Trentz O, Kossmann T, Schulthess G K von.
Detection of metallic implant-associated infections with FDG PET in patients with
trauma: correlation with microbiologic results.
Radiology.
2003;
226
391-398
- 84
Yamada S, Kubota K, Kubota R, Ido T, Tamahashi N.
High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory
tissue.
J Nucl Med.
1995;
36
1301-1316
- 85
De Winter F, Huysse W, De Paepe P, Lambert B, Poffyn B, Dierck R.
High F-18 FDG uptake in a paraspinal textiloma.
Clin Nucl Med.
2002;
27
132-133
- 86
De Winter F, Van De Wiele C, De Clercq D, Vogelaers D, De Bondt P, Dierckx R A.
Aseptic loosening of a knee prosthesis as imaged on FDG positron emission tomography.
Clin Nucl Med.
2000;
25
923
- 87
Van Acker F, Nuyts J, Maes A, Vanquickenborne B, Stuyck J, Bellemans J, Vleugels S,
Bormans G, Mortelmans L.
FDG-PET, 99mTc-HMPAO white blood cell SPET and bone scintigraphy in the evaluation of painful
total knee arthroplasties.
Eur J Nucl Med.
2001;
28
1496-1504
- 88
Love C, Marwin S E, Tomas M B, Krauss E S, Tronco G G, Bhargava K K, Nichols K J,
Palestro C J.
Diagnosing infection in the failed joint replacement: a comparison of coincidence
detection 18F-FDG and 111In-labeled leukocyte/99mTc-sulfur colloid marrow imaging.
J Nucl Med.
2004;
45
1864-1871
- 89
Kälicke T, Schmitz A, Risse J H, Arens S, Keller E, Hansis M, Schmitt O, Biersack H J,
Grünwald F.
Fluorine-18 fluorodeoxyglucose positron emission tomography in infectious bone diseases:
results of histologically confirmed cases.
Eur J Nucl Med.
2000;
27
524-528
- 90
Schmitz A, Risse H J, Kälicke T, Grünwald F, Schmitt O.
FDG-PET zur Diagnostik und Verlaufskontrolle entzündlicher Prozesse: Erste Ergebnisse
aus orthopädischer Sicht; FDG-PET for diagnosis and follow-up of inflammatory processes:
First results from an orthopedic view.
Z Orthop Ihre Grenzgeb.
2000;
138
407-412
- 91
Zhuang H, Sam J W, Chacko T K, Duarte P S, Hickeson M, Feng Q, Nakhoda K Z, Guan L,
Reich P, Altimari S M, Alavi A.
Rapid normalization of osseous FDG uptake following traumatic or surgical fractures.
Eur J Nucl Med Mol Imaging.
2003;
30
1096-1103
- 92
Stádler P, Bìlohlávek O, Spacek M, Michálek P.
Diagnosis of vascular prosthesis infection with FDG-PET/CT.
J Vasc Surg.
2004;
40
1246-1247
PD Dr. (Univ. Zagreb) V. Ivančević
Nuklearmedizinische Gemeinschaftspraxis im AKH
Siemensplatz 4
29223 Celle
Phone: +49/51 41/72 16 01
Fax: +49/51 41/72 16 49
Email: info@nuklearmedizin-am-akh.de