Zusammenfassung
Interventionen unter MRT-Kontrolle waren in der Vergangenheit aufgrund langer Messzeiten
und des eingeschränkten Patientenzugangs nur mit großen Schwierigkeiten durchzuführen.
Die Weiterentwicklung der MR-Geräte, die Verbesserungen der MR-Messsequenzen, die
schnelle Bildgebung ermöglichen, und die zunehmende Verfügbarkeit von im MRT einsetzbaren
Instrumenten haben viele dieser Hindernisse beseitigt. Parallel zur Entwicklung der
MRT werden perkutane und endovaskuläre Interventionen unter Bildkontrolle immer komplexer
und stellen immer höhere Ansprüche an die Bildgebung, mit denen solche Eingriffe gesteuert
und kontrolliert werden. Diese zunächst parallel laufenden Trends zeigen in den letzten
Jahren eine gewisse Konvergenz. Das Interesse an der MRT-Kontrolle von perkutanen
und endovaskulären Interventionen nimmt zu, nicht zuletzt auch aufgrund der Eigenschaften
der MRT, sowohl die Morphologie mit exzellentem Weichteilkontrast als auch funktionelle
Informationen darzustellen. Das Ziel dieser Übersicht ist es, die technischen Voraussetzungen
MRT-gesteuerter endovaskulärer Interventionen darzustellen, erste experimentelle und
klinische Anwendungen zu diskutieren und Sicherheitsaspekte der Technik zu erörtern.
Abstract
Historically, the combination of relatively long imaging times and restricted patient
access has made MRI-guided intervention an impractical technique. Recent developments
in MR hardware, pulse sequence improvements that have allowed the development of rapid
imaging, and the availability of instruments that can be used under MR guidance have
helped to overcome many of the disadvantages of MRI. Parallel to the development of
MRI, image-guided percutaneous and endovascular interventions are becoming increasingly
complex and require progressively more sophisticated imaging techniques to guide and
control such interventions. These initially parallel trends have converged in the
last couple of years. The ability of MRI to provide both unprecedented morphology
and functional information has created a growing interest in both percutaneous and
endovascular MRI-guided interventions. The goal of this review is to describe the
technical prerequisites for MR-guided endovascular interventions, to discuss experimental
and clinical applications, and to explain safety aspects of this technique.
Key words
contrast agents - interventional procedures - interventional MR - technical aspects
- safety - MR angiography
Literatur
- 1
Rhee T K, Larson A C, Prasad P V. et al .
Feasibility of blood oxygenation level-dependent MR imaging to monitor hepatic transcatheter
arterial embolization in rabbits.
J Vasc Interv Radiol.
2005;
16
1523-1528
- 2
Thomas M, Schulz T, Schmidt F. et al .
MRT-gesteuerte Stanzbiopsie der Schulter: Möglichkeiten und Erfahrungen an einem vertikal
offenen 0,5-T-System.
Fortschr Röntgenstr.
2005;
177
1276-1283
- 3
Gaffke G, Gebauer B, Gnauck M. et al .
Potenzial der MRT für die Radiofrequenzablation von Lebertumoren.
Fortschr Röntgenstr.
2005;
177
77-83
- 4
Boss A, Clasen S, Kuczyk M. et al .
Radiofrequenzablation des Nierenzellkarzinoms unter MR-Bildgebung: Erste Ergebnisse.
Fortschr Röntgenstr.
2005;
177
1139-1145
- 5
Obenauer S, Grabbe E, Knollmann F.
Stellenwert der MR-gestützten Lokalisation und Biopsie von Brustläsionen.
Fortschr Röntgenstr.
2006;
178
477-483
- 6
Paetzel C, Zorger N, Bachthaler M. et al .
Feasibility of MR-guided angioplasty of femoral artery stenoses using real-time imaging
and intraarterial contrast-enhanced MR angiography.
Fortschr Röntgenstr.
2004;
176
1232-1236
- 7
Dick A, Raman V, Raval A. et al .
Invasive human magnetic resonance imaging during angioplasty: feasibility in a combined
X-ray/MRI suite.
Catheterization and cardiovascular interventions.
2005;
64
265-274
- 8
Vogl T J, Balzer J O, Mack M G. et al .
Hybrid MR interventional imaging system: combined MR and angiography suites with single
interactive table. Feasibility study in vascular liver tumor procedures.
Eur Radiol.
2002;
12
1394-1400
- 9
Fahrig R, Butts K, Rowlands J A. et al .
A truly hybrid interventional MR/X-ray system: feasibility demonstration.
J Magn Reson Imaging.
2001;
13
294-300
- 10
Wacker F K, Elgort D, Hillenbrand C M. et al .
The catheter-driven MRI scanner: a new approach to intravascular catheter tracking
and imaging-parameter adjustment for interventional MRI.
AJR.
2004;
183
391-395
- 11
Bock M, Volz S, Zuhlsdorff S. et al .
MR-guided intravascular procedures: real-time parameter control and automated slice
positioning with active tracking coils.
J Magn Reson Imaging.
2004;
19
580-589
- 12
Bock M, Muller S, Zuehlsdorff S. et al .
Active catheter tracking using parallel MRI and real-time image reconstruction.
Magn Reson Med.
2006;
55
1454-1459
- 13
Guttman M A, Kellman P, Dick A J. et al .
Real-time accelerated interactive MRI with adaptive TSENSE and UNFOLD.
Magn Reson Med.
2003;
50
315-321
- 14
Wacker F K, Faiss S, Reither K. et al .
MR imaging-guided biliary drainage in an open low-field system: first clinical experiences.
Fortschr Röntgenstr.
2000;
172
744-747
- 15
Hagspiel K D, Kandarpa K, Silverman S G.
Interactive MR-guided percutaneous nephrostomy.
J Magn Reson Imaging.
1998;
8
1319-1322
- 16
Williams J R.
The interdependence of staff and patient doses in interventional radiology.
Br J Radiol.
1997;
70
498-503
- 17
Martin A J, Saloner D A, Roberts T P. et al .
Carotid stent delivery in an XMR suite: immediate assessment of the physiologic impact
of extracranial revascularization.
Am J Neuroradiol.
2005;
26
531-537
- 18
Deng J, Miller F H, Rhee T K. et al .
Diffusion-weighted MR imaging for determination of hepatocellular carcinoma response
to yttrium-90 radioembolization.
J Vasc Interv Radiol.
2006;
17
1195-1200
- 19
Hillenbrand C M, Elgort D R, Wong E Y. et al .
Active device tracking and high-resolution intravascular MRI using a novel catheter-based,
opposed-solenoid phased array coil.
Magn Reson Med.
2004;
51
668-675
- 20
Omary R A, Gehl J A, Schirf B E. et al .
MR imaging- versus conventional X-ray fluoroscopy-guided renal angioplasty in swine:
prospective randomized comparison.
Radiology.
2006;
238
489-496
- 21
Elgort D R, Hillenbrand C M, Zhang S. et al .
Image-guided and -monitored renal artery stenting using only MRI.
J Magn Reson Imaging.
2006;
23
619-627
- 22
Green J D, Omary R A, Schirf B E. et al .
Comparison of X-ray fluoroscopy and interventional magnetic resonance imaging for
the assessment of coronary artery stenoses in swine.
Magn Reson Med.
2005;
54
1094-1099
- 23
Bakker C J, Hoogeveen R M, Weber J. et al .
Visualization of dedicated catheters using fast scanning techniques with potential
for MR-guided vascular interventions.
Magn Reson Med.
1996;
36
816-820
- 24
Wacker F K, Reither K, Branding G. et al .
Magnetic resonance-guided vascular catheterization: feasibility using a passive tracking
technique at 0.2 Telsa in a pig model.
J Magn Reson Imaging.
1999;
10
841-844
- 25
Omary R A, Frayne R, Unal O. et al .
MR-guided angioplasty of renal artery stenosis in a pig model: a feasibility study.
J Vasc Interv Radiol.
2000;
11
373-381
- 26
Frayne R, Weigel C, Yanng Z. et al .
MR evaluation of signal emitting coatings.
In, Proceedings of the 7th Annual Meetin of ISMRM, Philadelphia, Pennsylvania, USA,.
1999;
580
- 27
Wendt M, Busch M, Wetzler R. et al .
Shifted rotated keyhole imaging and active tip-tracking for interventional procedure
guidance.
J Magn Reson Imaging.
1998;
8
258-261
- 28
Glowinski A, Adam G, Bucker A. et al .
Catheter visualization using locally induced, actively controlled field inhomogeneities.
Magn Reson Med.
1997;
38
253-258
- 29
Dumoulin C L, Souza S P, Darrow R D.
Real-time position monitoring of invasive devices using magnetic resonance.
Magn Reson Med.
1993;
29
411-415
- 30
Wendt M, Busch M, Wetzler R. et al .
Shifted rotated keyhole imaging and active tip-tracking for interventional procedure
guidance.
J Magn Reson Imaging.
1998;
8
258-261
- 31
Flask C, Elgort D, Wong E. et al .
A method for fast 3D tracking using tuned fiducial markers and a limited projection
reconstruction FISP (LPR-FISP) sequence.
J Magn Reson Imaging.
2001;
14
617-627
- 32
Zuehlsdorff S, Umathum R, Volz S. et al .
MR coil design for simultaneous tip tracking and curvature delineation of a catheter.
Magn Reson Med.
2004;
52
214-218
- 33
Duerk J L, Lewin J S, Wendt M. et al .
Remember true FISP? A high SNR, near 1-second imaging method for T2- like contrast
in interventional MRI at.2 T.
J Magn Reson Imaging.
1998;
8
203-208
- 34
Quick H H, Kuehl H, Kaiser G. et al .
Interventional MRA using actively visualized catheters, TrueFISP, and real-time image
fusion.
Magn Reson Med.
2003;
49
129-137
- 35
Liu C Y, Farahani K, Lu D S. et al .
Safety of MRI-guided endovascular guidewire applications.
J Magn Reson Imaging.
2000;
12
75-78
- 36
Nitz W R, Oppelt A, Renz W. et al .
On the heating of linear conductive structures as guide wires and catheters in interventional
MRI.
J Magn Reson Imaging.
2001;
13
105-114
- 37
Ladd M E, Quick H H.
Reduction of resonant RF heating in intravascular catheters using coaxial chokes.
Magn Reson Med.
2000;
43
615-619
- 38
Weiss S, Vernickel P, Schaeffter T. et al .
Transmission line for improved RF safety of interventional devices.
Magn Reson Med.
2005;
54
182-189
- 39
Burl M, Coutts G A, Young I R.
Tuned fiducial markers to identify body locations with minimal perturbation of tissue
magnetization.
Magn Reson Med.
1996;
36
491-493
- 40
Quick H H, Zenge M O, Kuehl H. et al .
Interventional magnetic resonance angiography with no strings attached: Wireless active
catheter visualization.
Magn Reson Med.
2005;
53
446-455
- 41
Kuehne T, Saeed M, Higgins C B. et al .
Endovascular stents in pulmonary valve and artery in swine: feasibility study of MR
imaging-guided deployment and postinterventional assessment.
Radiology.
2003;
226
475-481
- 42
Wong E Y, Zhang Q, Duerk J L. et al .
An optical system for wireless detuning of parallel resonant circuits.
J Magn Reson Imaging.
2000;
12
632-638
- 43
Kivelitz D, Wagner S, Schnorr J. et al .
A vascular stent as an active component for locally enhanced magnetic resonance imaging:
initial in vivo imaging results after catheter-guided placement in rabbits.
Invest Radiol.
2003;
38
147-152
- 44
Scheffler K, Korvink J G.
Navigation with Hall sensor device for interventional MRI.
Proceedings of the 12th Annual Meeting of ISMRM, Kyoto, Japan,.
2004;
950
- 45
Bock M, Umathum R, Sikora J. et al .
A Faraday effect position sensor for interventional magnetic resonance imaging.
Phys Med Biol.
2006;
51
999-1009
- 46
Huegli R W, Aschwanden M, Scheffler K. et al .
Fluoroscopic contrast-enhanced MR angiography with a magnetization-prepared steady-state
free precession technique in peripheral arterial occlusive disease.
Am J Roentgenol.
2006;
187
242-247
- 47
Kaul M G, Stork A, Bansmann P M. et al .
Evaluation von Balanced Steady-State Free Precession (TrueFISP) und k-Raum segmentierter
Gradientenechosequenzen für die 3D-MR-Koronarangiografie mit Navigator-Technik bei
3 Tesla.
Fortschr Röntgenstr.
2004;
176
1560-1565
- 48
Wacker F K, Reither K, Ebert W. et al .
MR Image-guided Endovascular Procedures with the Ultrasmall Superparamagnetic Iron
Oxide SH U 555 C as an Intravascular Contrast Agent: Study in Pigs.
Radiology.
2003;
226
459-464
- 49
Bakker C J, Bos C, Weinmann H J.
Passive tracking of catheters and guidewires by contrast-enhanced MR fluoroscopy.
Magn Reson Med.
2001;
45
17-23
- 50
Wacker F K, Wendt M, Ebert W. et al .
Use of a blood-pool contrast agent for MR-guided vascular procedures: feasibility
of ultrasmall superparamagnetic iron oxide particles.
Acad Radiol.
2002;
9
1251-1254
- 51
Maes R M, Lewin J S, Duerk J L. et al .
Combined use of the intravascular blood-pool agent, gadomer, and carbon dioxide: a
novel type of double-contrast magnetic resonance angiography (MRA).
J Magn Reson Imaging.
2005;
21
645-649
- 52
Eggebrecht H, Kuhl H, Kaiser G M. et al .
Feasibility of real-time magnetic resonance-guided stent-graft placement in a swine
model of descending aortic dissection.
Eur Heart J.
2006;
27
613-620
- 53
Bücker A, Neuerburg J M, Adam G. et al .
MR-gesteuerte Spiralembolisation von Nierenarterien in einem Tiermodell.
Fortschr Röntgenstr.
2003;
175
271-274
- 54
Fink C, Bock M, Umathum R. et al .
Renal embolization: feasibility of magnetic resonance-guidance using active catheter
tracking and intraarterial magnetic resonance angiography.
Invest Radiol.
2004;
39
111-119
- 55
Buecker A, Spuentrup E, Grabitz R. et al .
Magnetic resonance-guided placement of atrial septal closure device in animal model
of patent foramen ovale.
Circulation.
2002;
106
511-515
- 56
Koops A, Lutomsky B, Steinke M. et al .
Kavotrikuspide Isthmusablation in der interventionellen MRT: Erste Erfahrungen mit
einem neuartigen elektophysiologischen Katheter im Schweinemodell.
Fortschr Röntgenstr.
2006;
178
S1
- 57
Arepally A, Karmarkar P V, Qian D. et al .
Evaluation of MR/fluoroscopy-guided portosystemic shunt creation in a swine model.
J Vasc Interv Radiol.
2006;
17
1165-1173
- 58
Manke C, Nitz W R, Lenhart M. et al .
Stentangioplastie von Beckenarterienstenosen unter MRT-Kontrolle: Erste klinische
Ergebnisse.
Fortschr Röntgenstr.
2000;
172
92-97
- 59
Razavi R, Hill D L, Keevil S F. et al .
Cardiac catheterisation guided by MRI in children and adults with congenital heart
disease.
Lancet.
2003;
362
1877-1882
- 60
Karmarkar P V, Kraitchman D L, Izbudak I. et al .
MR-trackable intramyocardial injection catheter.
Magn Reson Med.
2004;
51
1163-1172
- 61
Miller D L, Balter S, Cole P E. et al .
Radiation doses in interventional radiology procedures: the RAD-IR study: part I:
overall measures of dose.
J Vasc Interv Radiol.
2003;
14
711-727
- 62
Mooney R B, McKinstry C S, Kamel H A.
Absorbed dose and deterministic effects to patients from interventional neuroradiology.
Br J Radiol.
2000;
73
745-751
- 63
Shellock F G, Crues J V.
MR procedures: biologic effects, safety, and patient care.
Radiology.
2004;
232
635-652
- 64
International Electrotechnical Commission .
IEC 60 601 - 2-33 Medical electrical equipment - Part 2 - 33: Particular requirements
for the safety of magnetic resonance equipment for medical diagnosis. Edition 2.1
consolidated with amendment 1:2005.
2005;
- 65
Bakker C J, Smits H F, Bos C. et al .
MR-guided balloon angioplasty: in vitro demonstration of the potential of MRI for
guiding, monitoring, and evaluating endovascular interventions.
J Magn Reson Imaging.
1998;
8
245-250
- 66
Mekle R, Hofmann E, Scheffler K. et al .
A polymer-based MR-compatible guidewire: a study to explore new prospects for interventional
peripheral magnetic resonance angiography (ipMRA).
J Magn Reson Imaging.
2006;
23
145-155
Prof. Frank K. Wacker
Klinik für Radiologie und Nuklearmedizin, Charité - Universitätsmedizin Berlin, Campus
Benjamin Franklin
Hindenburgdamm 30
12203 Berlin
Phone: ++49/30/84 45 30 42
Phone: ++49/1788212488
Email: frank.wacker@charite.de