Subscribe to RSS
DOI: 10.1055/s-2007-963195
© Georg Thieme Verlag KG Stuttgart · New York
Methodische Aspekte der funktionellen Neurobildgebung im MRT-Hochfeldbereich: eine kritische Übersicht
Methodological Aspects of Functional Neuroimaging at High Field Strength: a Critical ReviewPublication History
eingereicht: 16.10.2006
angenommen: 22.4.2007
Publication Date:
26 June 2007 (online)

Zusammenfassung
Die letzten Jahre haben eindrucksvoll bewiesen, dass die Hochfeld-Magnetresonanztomografie (MRT) in nahezu allen Belangen den konventionellen Geräten bis 1,5 Tesla (T) überlegen ist. Nachdem 3-T-Geräte ihren weltweiten Siegeszug durch Forschungseinrichtungen angetreten haben, ist eine neue Gerätegeneration mit Feldstärken von 7T und mehr in Sichtweite. Mit dem Sprung zu ultrahohen Feldern nähert sich die MRT-Technologie immer mehr den physikalischen Grenzen des Machbaren an und ein immer größerer finanzieller Aufwand muss betrieben werden, um dies zu erreichen. Im vorliegenden Artikel wird versucht, einen kritischen Überblick über die Vorteile, aber auch die inhärenten Probleme der funktionellen Bildgebung bei ultrahoher Feldstärke zu geben. Dabei beschränken wir uns hauptsächlich auf T2*-basierte, nichtkontrastmittelgestützte funktionelle Bildgebungstechniken. Dargestellt wird die Bedeutung der Hochfeldtechnologie im Hinblick auf SNR, CNR, Auflösung, Sequenzen sowie auf Artefakte, Lärmbelastung und SAR. Einen besonderen Stellenwert nimmt die Diskussion der parallelen Bildgebung ein, die voraussichtlich die Weiterentwicklung bei hohen und ultrahohen Feldstärken maßgeblich bestimmen wird. Abschließend wird versucht, anhand ausgewählter Publikationen die Bedeutung hoher Feldstärken für die funktionelle Neurobildgebung zu verdeutlichen.
Abstract
The last few years have proven that high field magnetic resonance imaging (MRI) is superior in nearly every way to conventional equipment up to 1.5 tesla (T). Following the global success of 3T-scanners in research institutes and medical practices, a new generation of MRI devices with field strengths of 7T and higher is now on the horizon. The introduction of ultra high fields has brought MRI technology closer to the physical limitations and increasingly greater costs are required to achieve this goal. This article provides a critical overview of the advantages and problems of functional neuroimaging using ultra high field strengths. This review is principally limited to T2*-based functional imaging techniques not dependent on contrast agents. The main issues include the significance of high field technology with respect to SNR, CNR, resolution, and sequences, as well as artifacts, noise exposure, and SAR. Of great relevance is the discussion of parallel imaging, which will presumably determine the further development of high and ultra high field strengths. Finally, the importance of high field strengths for functional neuroimaging is explained by selected publications.
Key words
brain - technical aspects - MR functional imaging - high field strength - review
Literatur
- 1
Giesel F L, Wustenberg T, Bongers A. et al .
MR-basierte Methoden der funktionellen Bildgebung des zentralen Nervensystems.
Fortschr Röntgenstr.
2005;
177
714-730
Reference Ris Wihthout Link
- 2
Heiland S.
MR-Methoden für funktionelle Untersuchungen des Gehirns. 86. Deutscher Röntgenkongress.
Fortschr Röntgenstr.
2005;
177
S 324
Reference Ris Wihthout Link
- 3
Hoenig K, Schild H, Scheef L.
Where context-based semantic inhibition functionally „matters”. 2nd. International Symposium „Highfield MR in Clinical Applications”.
Fortschr Röntgenstr.
2004;
176
433
Reference Ris Wihthout Link
- 4
Scheef L, Neuloh G, Brockmöller T. et al .
Rekonstruktion intraoperativer Elektroden-Grids zum direkten Vergleich funktioneller
MR-Ergebnisse mit intraoperativer Stimulation. 85. Deutscher Röntgenkongress.
Fortschr Röntgenstr.
2004;
176
S 159
Reference Ris Wihthout Link
- 5
Stippich C, Heiland S, Tronnier V. et al .
Functional magnetic resonance imaging: Physiological background, technical aspects
and prerequisites for clinical use.
Fortschr Röntgenstr.
2002;
174
43-49
Reference Ris Wihthout Link
- 6
Prothmann S, Puccini S, Dalitz B. et al .
Präoperatives Mapping der Sprachareale mittels funktioneller Magnetresonanztomographie
(fMRT) bei Patienten mit Hirntumoren: Paradigmenvergleich.
Fortschr Röntgenstr.
2005;
177
1522-1531
Reference Ris Wihthout Link
- 7
Schild H.
Clinical highfield MR.
Fortschr Röntgenstr.
2005;
177
621-623
Reference Ris Wihthout Link
- 8
Stanisz G J, Odrobina E E, Pun J. et al .
T1, T2 relaxation and magnetization transfer in tissue at 3T.
Magn Reson Med.
2005;
54
507-512
Reference Ris Wihthout Link
- 9
Triantafyllou C, Hoge R D, Krueger G. et al .
Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition
parameters.
Neuroimage.
2005;
26
243-250
Reference Ris Wihthout Link
- 10
Kruger G, Kastrup A, Glover G H.
Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance
imaging.
Magn Reson Med.
2001;
45
595-604
Reference Ris Wihthout Link
- 11
Ogawa S, Lee T M, Kay A R. et al .
Brain magnetic resonance imaging with contrast dependent on blood oxygenation.
Proc Natl Acad Sci U S A.
1990;
87
9868-9872
Reference Ris Wihthout Link
- 12
Turner R, Jezzard P, Wen H. et al .
Functional mapping of the human visual cortex at 4 and 1.5 tesla using deoxygenation
contrast EPI.
Magn Reson Med.
1993;
29
277-279
Reference Ris Wihthout Link
- 13
Gati J S, Menon R S, Ugurbil K. et al .
Experimental determination of the BOLD field strength dependence in vessels and tissue.
Magn Reson Med.
1997;
38
296-302
Reference Ris Wihthout Link
- 14
Krasnow B, Tamm L, Greicius M D. et al .
Comparison of fMRI activation at 3 and 1.5 T during perceptual, cognitive, and affective
processing.
Neuroimage.
2003;
18
813-826
Reference Ris Wihthout Link
- 15
Schmidt C F, Boesiger P, Ishai A.
Comparison of fMRI activation as measured with gradient- and spin-echo EPI during
visual perception.
Neuroimage.
2005;
26
852-859
Reference Ris Wihthout Link
- 16
Glover G H, Law C S.
Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts.
Magn Reson Med.
2001;
46
515-522
Reference Ris Wihthout Link
- 17
Glover G H, Lai S.
Self-navigated spiral fMRI: interleaved versus single-shot.
Magn Reson Med.
1998;
39
361-368
Reference Ris Wihthout Link
- 18
Lu H, Mazaheri Y, Zhang R. et al .
Multishot partial-k-space EPI for high-resolution fMRI demonstrated in a rat whisker
barrel stimulation model at 3T.
Magn Reson Med.
2003;
50
1215-1222
Reference Ris Wihthout Link
- 19
Liu G, Sobering G, Duyn J. et al .
A functional MRI technique combining principles of echo-shifting with a train of observations
(PRESTO).
Magn Reson Med.
1993;
30
764-768
Reference Ris Wihthout Link
- 20
Ramsey N F, Brink J S, Muiswinkel van A M. et al .
Phase navigator correction in 3D fMRI improves detection of brain activation: quantitative
assessment with a graded motor activation procedure.
Neuroimage.
1998;
8
240-248
Reference Ris Wihthout Link
- 21
Klarhofer van den M, Dilharreguy B, Gelderen G P. et al .
A PRESTO-SENSE sequence with alternating partial-Fourier encoding for rapid susceptibility-weighted
3D MRI time series.
Magn Reson Med.
2003;
50
830-838
Reference Ris Wihthout Link
- 22
Golay van X, Zwart J A, Ho Y C. et al .
Parallel imaging techniques in functional MRI.
Top Magn Reson Imaging.
2004;
15
255-265
Reference Ris Wihthout Link
- 23
Ravicz M E, Melcher J R, Kiang N Y.
Acoustic noise during functional magnetic resonance imaging.
J Acoust Soc Am.
2000;
108
1683-1696
Reference Ris Wihthout Link
- 24
Moelker de A, Wielopolski P A, Pattynama P M.
Relationship between magnetic field strength and magnetic-resonance-related acoustic
noise levels.
MAGMA.
2003;
16
52-55
Reference Ris Wihthout Link
- 25
Ruggero M A, Rich N C, Recio A.
The effect of intense acoustic stimulation on basilar-membrane vibrations.
Auditory Neuroscience.
1996;
2
329-345
Reference Ris Wihthout Link
- 26
Chambers J, Akeroyd M A, Summerfield A Q. et al .
Active control of the volume acquisition noise in functional magnetic resonance imaging:
method and psychoacoustical evaluation.
J Acoust Soc Am.
2001;
110
3041-3054
Reference Ris Wihthout Link
- 27
Edelstein W A, Kidane T K, Taracila V. et al .
Active-passive gradient shielding for MRI acoustic noise reduction.
Magn Reson Med.
2005;
53
1013-1017
Reference Ris Wihthout Link
- 28
Scheef L, Daamen M, Fehse U. et al .
Combining SPARSE fMRI Designs with SENSE at High Field Strength. 4rd International Symposium on Highfield MR in Clinical Applications.
Fortschr Röntgenstr.
2006;
178
115-127
Reference Ris Wihthout Link
- 29
Pruessmann K P, Weiger M, Scheidegger M B. et al .
SENSE: sensitivity encoding for fast MRI.
Magn Reson Med.
1999;
42
952-962
Reference Ris Wihthout Link
- 30
Griswold M A, Jakob P M, Heidemann R M. et al .
Generalized autocalibrating partially parallel acquisitions (GRAPPA).
Magn Reson Med.
2002;
47
1202-1210
Reference Ris Wihthout Link
- 31
Hermans E J, Neggers S F, Ramsey N F.
Ultra-fast three dimensional PRESTO-SENSE imaging with full brain coverage on a clinical
3T scanner. 12th Annual Meeting of Organization of Human Brain Mapping.
Neuroimage.
2006;
31
197
Reference Ris Wihthout Link
- 32
Golay X, Pruessmann K P, Weiger M. et al .
PRESTO-SENSE: an ultrafast whole-brain fMRI technique.
Magn Reson Med.
2000;
43
779-786
Reference Ris Wihthout Link
- 33
Yang Q X, Wang J, Smith M B. et al .
Reduction of magnetic field inhomogeneity artifacts in echo planar imaging with SENSE
and GESEPI at high field.
Magn Reson Med.
2004;
52
1418-1423
Reference Ris Wihthout Link
- 34
Zwart J A, Gelderen de F, Golay X. et al .
Accelerated parallel imaging for functional imaging of the human brain.
NMR Biomed.
2006;
19
342-351
Reference Ris Wihthout Link
- 35
Zwart van J A, Gelderen de P, Kellman P. et al .
Application of sensitivity-encoded echo-planar imaging for blood oxygen level-dependent
functional brain imaging.
Magn Reson Med.
2002;
48
1011-1020
Reference Ris Wihthout Link
- 36
Preibisch C, Pilatus U, Bunke J. et al .
Functional MRI using sensitivity-encoded echo planar imaging (SENSE-EPI).
Neuroimage.
2003;
19
412-421
Reference Ris Wihthout Link
- 37
Wiesinger F, Van de Moortele van P F, Adriany G. et al .
Potential and feasibility of parallel MRI at high field.
NMR Biomed.
2006;
19
368-378
Reference Ris Wihthout Link
- 38
Ohliger M A, Grant A K, Sodickson D K.
Ultimate intrinsic signal-to-noise ratio for parallel MRI: electromagnetic field considerations.
Magn Reson Med.
2003;
50
1018-1030
Reference Ris Wihthout Link
- 39
Oshio K, Feinberg D A.
GRASE (Gradient- and spin-echo) imaging: a novel fast MRI technique.
Magn Reson Med.
1991;
20
344-349
Reference Ris Wihthout Link
- 40
Bandettini P A, Wong E C, Jesmanowicz A. et al .
Spin-echo and gradient-echo EPI of human brain activation using BOLD contrast: a comparative
study at 1.5 T.
NMR Biomed.
1994;
7
12-20
Reference Ris Wihthout Link
- 41
Norris D G, Zysset S, Mildner T. et al .
An investigation of the value of spin-echo-based fMRI using a Stroop color-word matching
task and EPI at 3 T.
Neuroimage.
2002;
15
719-726
Reference Ris Wihthout Link
- 42
Yacoub E, Van de Moortele P F, Shmuel A. et al .
Signal and noise characteristics of Hahn SE and GE BOLD fMRI at 7 T in humans.
Neuroimage.
2005;
24
738-750
Reference Ris Wihthout Link
- 43
Harel N, Lin J, Moeller S. et al .
Combined imaging-histological study of cortical laminar specificity of fMRI signals.
Neuroimage.
2006;
29
879-887
Reference Ris Wihthout Link
- 44
Hoenig K, Kuhl C K, Scheef L.
Functional 3.0-T MR assessment of higher cognitive function: are there advantages
over 1.5-T imaging?.
Radiology.
2005;
234
860-868
Reference Ris Wihthout Link
- 45
Yang Y, Wen H, Mattay V S. et al .
Comparison of 3D BOLD functional MRI with spiral acquisition at 1.5 and 4.0 T.
Neuroimage.
1999;
9
446-451
Reference Ris Wihthout Link
- 46
Fera F, Yongbi M N, Gelderen van P. et al .
EPI-BOLD fMRI of human motor cortex at 1.5 T and 3.0 T: sensitivity dependence on
echo time and acquisition bandwidth.
J Magn Reson Imaging.
2004;
19
19-26
Reference Ris Wihthout Link
- 47
Beisteiner R, Windischberger C, Lanzenberger R. et al .
Finger somatotopy in human motor cortex.
Neuroimage.
2001;
13
1016-1026
Reference Ris Wihthout Link
- 48
Maldjian J A, Gottschalk A, Patel R S. et al .
The sensory somatotopic map of the human hand demonstrated at 4 Tesla.
Neuroimage.
1999;
10
55-62
Reference Ris Wihthout Link
- 49
Overduin S A, Servos P.
Distributed digit somatotopy in primary somatosensory cortex.
Neuroimage.
2004;
23
462-472
Reference Ris Wihthout Link
- 50
Menon R S, Ogawa S, Strupp J P. et al .
Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging.
J Neurophysiol.
1997;
77
2780-2787
Reference Ris Wihthout Link
- 51
Zou K H, Greve D N, Wang M. et al .
Reproducibility of functional MR imaging: preliminary results of prospective multi-institutional
study performed by Biomedical Informatics Research Network.
Radiology.
2005;
237
781-789
Reference Ris Wihthout Link
Dr. Lukas Scheef
Experimentelle Radiologie, Radiologische Klinik, Universitätsklinikum Bonn
Sigmund-Freud-Str. 25
53105 Bonn
Phone: ++49/2 28/28 71 58 70
Fax: ++49/2 28/28 71 60 93
Email: Lukas.Scheef@ukb.uni-bonn.de