Rofo 2007; 179(9): 945-952
DOI: 10.1055/s-2007-963350
Herz

© Georg Thieme Verlag KG Stuttgart · New York

Hochaufgelöste quantitative MR-tomografische Bestimmung der subendo- und subepimyokardialen Perfusion unter Stress und in Ruhe

High-Resolution MRI for the Quantitative Evaluation of Subendocardial and Subepicardial Perfusion Under Pharmacological Stress and At RestC. O. Ritter1 , K. del Savio1 , A. Brackertz1 , M. Beer1 , D. Hahn1 , H. Köstler1
  • 1Universität Würzburg, Institut für Röntgendiagnostik
Further Information

Publication History

Eingegangen: 10.4.2007

Angenommen: 19.6.2007

Publication Date:
17 August 2007 (online)

Zusammenfassung

Ziel: Die MR-Stress-Perfusionsbildgebung ermöglicht die Quantifizierung der myokardialen Perfusion, die Bestimmung der myokardialen Perfusionsreserve und des Verhältnisses zwischen subendo- und subepikardialer Perfusion. Ziel dieser Studie war es, eine hochauflösende Perfusionssequenz gegenüber einer Standard-Sequenz zu evaluieren. Material und Methoden: Bei 10 herzgesunden Probandinnen und Probanden wurden First-Pass-Perfusionsuntersuchungen in Ruhe und unter Adenosin-Stress in Präbolus-Technik an einem 1,5-T-Gerät durchgeführt. Verwendet wurde eine SR-True-FISP-GRAPPA-Sequenz (Beschleunigungsfaktor 3) mit einer Auflösung von 1,8 × 1,8 mm. Als Vergleichskollektiv diente eine Gruppe von 12 weiteren herzgesunden Probanden, die am selben Gerät ebenso in Ruhe und Stress mit einer Standard-SR-TrueFISP-Sequenz und einer Auflösung von 2,7 × 3,3 mm untersucht wurden. Die myokardialen Konturen wurden manuell umfahren, automatisch in zwei Bereiche gleicher Dicke sowie acht Sektoren unterteilt und mit Basislinien- und Kontaminationskorrektur ausgewertet. Ergebnisse: Bei der GRAPPA-Sequenz ergab sich in Ruhe eine Verhältnis von subendo- zu subepimyokardialer Perfusion von 1,18 ± 0,32. Unter pharmakologisch induziertem Stress betrug das Verhältnis 1,08 ± 0,27. Für die Standard-Sequenz betrug das Verhältnis in Ruhe 1,15 ± 0,28 und unter Stress 1,11 ± 0,33. Für die hochauflösende Sequenz finden sich höhere Mittelwerte des Verhältnisses von subendo- zu subepimyokardialer Perfusion bei vergleichbaren Standardabweichungen, wobei die Unterschiede zwischen den Sequenzen noch nicht statistisch signifikant sind. Schlussfolgerungen: Die Bestimmung der subendomyokardialen und subepimyokardialen Perfusion ist mit einer hochauflösenden First-Pass-Perfusionssequenz möglich. Die hierbei zur Vermeidung systematischer Fehler eingesetzte höhere räumliche Auflösung führt zwar zu höherem Bildrauschen, jedoch nicht zu einer merklichen Verschlechterung der quantitativen Perfusionswerte unter Stress- und Ruhebedingungen.

Abstract

Purpose: MR stress perfusion imaging of the heart allows the quantification of myocardial perfusion and the evaluation of myocardial perfusion reserve (MPR) and the ratio of subendocardial to subepicardial perfusion at rest and under adenosine stress. The aim of this study was to evaluate a high-resolution GRAPPA sequence for quantitative MR first pass perfusion imaging in healthy volunteers. Materials and Methods: First pass stress and rest perfusion studies were performed on 10 healthy volunteers using a 1.5 T MR scanner with a multislice SR-TrueFISP first pass perfusion sequence with a GRAPPA algorithm (acceleration factor 3) in prebolus technique and an image resolution of 1.8 × 1.8 mm. For the comparison group, we examined 12 different healthy volunteers with a standard first pass perfusion SR-TrueFISP sequence using a resolution of 2.7 × 3.3 mm. Myocardial contours were manually delineated followed by an automatic division of the myocardium into two rings with an equal thickness for the subendo- and subepicardial layer. Eight sectors per slice were evaluated using contamination and baseline correction. Results: Using the GRAPPA sequence, the ratio of subendo- to subepimyocardial perfusion was 1.18 ± 0.32 for the examination at rest. Under pharmacologically induced stress, the ratio was 1.08 ± 0.27. For the standard sequence the ratio was 1.15 ± 0.28 at rest and 1.11 ± 0.33 under stress. For the high resolution sequence higher mean values for the subendo- to subepimyocardial ratio were obtained with comparable standard deviations. The difference between the sequences was not significant. Conclusion: The evaluation of subendomyocardial and subepimyocardial perfusion is feasible with a high-resolution first pass perfusion sequence. The use of a higher resolution to avoid systematic error leads to increased image noise. However, no relevant reduction in the quantitative perfusion values under stress and at rest was able to be depicted.

Literatur

  • 1 Schwaiger M. Myocardial perfusion imaging with PET.  J Nucl Med. 1994;  35 693-698
  • 2 Demer L L, Gould K L, Goldstein R A. et al . Assessment of coronary artery disease severity by positron emission tomography: comparison with quantitative arteriography in 193 patients.  Circulation. 1989;  79 825-835
  • 3 Muzik O, Duvernoy C, Beanlands R S. et al . Assessment of diagnostic performance of quantitative flow measurements in normal subjects and patients with angiographically documented coronary artery disease by means of nitrogen 13 ammonia and positron emission tomography.  J Am Coll Cardiol. 1998;  31 534-540
  • 4 Go R T, Marwick T H, MacIntyre W J. et al . A prospective comparison of rubidium 82 PET and thallium SPECT myocardial perfusion imaging using a single dipyridamole stress in the diagnosis of coronary artery disease.  J Nuc Med. 1990;  31 1899-1905
  • 5 Schwitter J, Nanz D, Kneifel S. et al . Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography.  Circulation. 2001;  103 2230-2235
  • 6 Okazawa H, Takahashi M, Hata T. et al . Quantitative evaluation of myocardial blood flow and ejection fraction with a single dose of (NH3)-N-13 and gated PET.  J Nucl Med. 2002;  43 999-1005
  • 7 Schwaiger M, Mehlin J. Cardiological applications of nuclear medicine.  The Lancet. 1999;  54 6661-666
  • 8 Ibrahim T, Nekolla S G, Schreiber K. et al . Assessment of coronary flow reserve: comparison between contrast-enhanced magnetic resonance imaging and positron emission tomography.  J Am Coll Cardiol. 2002;  39 864-870
  • 9 Bache R J, McHale P A, Greenfield  JC Jr. et al . Transmural myocardial perfusion during restricted coronary inflow in the awake dog.  Am J Physiol. 1977;  232 H645-651
  • 10 Ootaki Y, Kamohara K, Schenk S. et al . Transmural distribution of myocardial blood perfusion and phasic coronary blood flow pattern in a canine model of acute ischemia.  Int J of Cardiology. 2006;  107 382-388
  • 11 Klumpp B, Helber U, Fenchel M. et al . Myocardial Perfusion MR-Imaging at 3 Tesla.  Fortschr Röntgenstr. 2006;  178 122
  • 12 Strach K, Meyer C, Naehle C P. et al . High Resolution Myocardial Perfusion Imaging at 3 Tesla: Comparison to standard 1.5 Tesla perfusion studies and diagnostic accuracy in patients with suspected CAD.  Fortschr Röntgenstr. 2006;  178 122
  • 13 Ligabue G, Romagnoli R, Torricelli P. et al . 3 Tesla MR cardiac applications: 6 months experience of daily clinical practice with emphasis on comparison with 1.5 Tesla for myocardial viability evaluation.  Fortschr Röntgenstr. 2005;  177 586
  • 14 Kondo M, Kawata K, Azuma A. Relationship between Coronary Blood flow velocity waveform and transmural distribution of myocardial blood flow in coronary artery.  Jpn Heart. 1999;  40 783-790
  • 15 Wilke N, Simm C, Zhang J. et al . Contrast enhanced first pass myocardial perfusion imaging: correlation between myocardial blood flow in dogs at rest and hyperemia.  Magn Reson Med. 1993;  29 485-497
  • 16 Kraitchman D L, Wilke N, Hexeberg E. et al . Myocardial perfusion and function in dogs with moderate coronary stenosis.  Magn Reson Med. 1996;  35 771-780
  • 17 Jerosch-Herold M, Hu X, Murthy N S. et al . Magnetic Resonance Imaging of Myocardial Contrast Enhancement with MS-325 and Its Relation to Myocardial Blood Flow and the Perfusion Reserve.  J Magn Reson Imaging. 2003;  18 544-554
  • 18 Epstein F H, London J F, Peters D C. et al . Multislice first-pass cardiac perfusion MRI: validation in a model of myocardial infarction.  Magn Reson Med. 2002;  47 482-491
  • 19 Klocke F J, Simonetti O P, Judd R M. Limits of detection of regional differences in vasodilated flow in viable myocardium by first-pass magnetic resonance perfusion imaging.  Circulation. 2001;  104 2412-2416
  • 20 Cullen J H, Horsfield M A, Reek C R. et al . Myocardial perfusion reserve index in humans using first-pass contrast-enhanced magnetic resonance imaging.  J Am Coll Cardiol. 1999;  33 1386-1394
  • 21 Fritz-Hansen T, Rostrup E, Søndergaard L. et al . Capillary transfer constant of Gd-DTPA in the myocardium at rest and during vasodilation assessed by MRI.  Magn Reson Med. 1998;  40 922-929
  • 22 Jerosch-Herold M, Seethamraju R T, Swingen C M. et al . Analysis of Myocardial Perfusion MRI.  J Magn Reson Imaging. 2004;  19 758-770
  • 23 Muehling O M, Jerosch-Herold M, Panse P. et al . Regional heterogeneity of myocardial perfusion in healthy human myocardium: Assessment with Magnetic Resonance Perfusion Imaging.  J Cardiovasc Magn Reson. 2004;  6 499-507
  • 24 Muehling O M, Wilke N M, Panse P. et al . Reduced myocardial perfusion reserve and transmural perfusion gradient in heart transplant arteriopathy assessed by magnetic resonance imaging.  J Am Coll Cardiol. 2003;  42 1054-1060
  • 25 Panting J R, Gatehouse P D, Yang G Z. et al . Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging.  N Engl J Med. 2002;  346 1948-1953
  • 26 Griswold M A, Jakob P M, Heidemann R M. et al . Generalized autocalibrating partially.  Magn Reson Med. 2002;  47 1202-1210
  • 27 Köstler H, Sandstede J, Lipke C. et al . Auto-SENSE perfusion imaging of the whole human heart.  J Magn Reson Imaging. 2003;  18 702-708
  • 28 Christian T F, Rettmann D W, Aletras A H. et al . Absolute Myocardial Perfusion in Canines Measured by Using Dual-Bolus First-Pass MR Imaging.  Radiology. 2004;  232 677-684
  • 29 Köstler H, Ritter C, Lipp M. et al . Prebolus Quantitative MR Heart Perfusion Imaging.  Magn Reson Med. 2004;  52 296-299
  • 30 Hsu L J, Rhoads K L, Holly J E. et al . Quantitative Myocardial Perfusion Analysis with a Dual-Bolus Contrast-Enhanced First-Pass MRI Technique in Humans.  J Magn Reson Imaging. 2006;  23 315-322
  • 31 Ritter C, Brackertz A, Sandstede J. et al . Absolute quantification of myocardial perfusion at rest and under adenosine stress.  Magn Reson Med. 2006;  56 844-849
  • 32 Köstler H, Ritter C, Reiss-Zimmermann M. et al . Correction for Partial Volume Errors in MR Heart Perfusion Imaging.  Magn Reson Med. 2004;  51 848-852
  • 33 Köstler H, Ritter C, Trumpp M. et al . Comparison of the Fermi function and the exponential function as model functions for deconvolution in quantitative heart perfusion imaging.  MAGMA. 2004;  16 p104
  • 34 Jerosch-Herold M, Wilke N, Stillman A E. Magnetic resonance quantification of myocardial perfusion reserve with a Fermi function model for constrained deconvolution.  Med Phys. 1998;  25 73-84
  • 35 Zierler K L. Equations for Measuring Blood Flow by External Monitoring of Radioisotopes.  Circ Res. 1965;  16 309-321
  • 36 Jerosch-Herold M, Swingen C, Seethamraju R T. Myocardial blood flow quantification with MRI by model-independent deconvolution.  Med Phys. 2002;  29 886-897
  • 37 Rimoldi O, Schäfers K, Boellaard R. et al . Quantification of Subendocardial and Subepicardial Blood Flow Using 15O-Labeled Water and PET: Experimental Validation.  The J of Nuc Med. 2006;  47 163-172
  • 38 Sandstede J, Ritter C, Köstler H. Vergleich von Gd-DTPA, Gd-BOPTA und Gadobutrol zur Bestimmung der myokardialen Perfusionsreserve in Präbolus-Technik.  Fortschr Röntgenstr. 2004;  176 190
  • 39 Canet E, Douek P, Janier M. et al . Influence of bolus volume and dose of Gadolinium chelate for first-pass myocardial perfusion MR imaging studies.  J Magn Reson Imaging. 1995;  5 411-415
  • 40 Fukuda S, Muro T, Hozumi T. et al . Changes in transmural distribution of myocardial perfusion assessed by quantitative intravenous myocardial contrast echocardiography in humans.  Heart. 2002;  88 368-372
  • 41 Wada H, Yasu T, Kotsuka H. et al . Evaluation of Transmural Perfusion by Ultra Harmonic Myocardial Contrast Echocardiography in Reperfused Acute Myocardial Infarction.  Circulation. 2005;  69 1041-1046
  • 42 Masugata H, Lafitte S, Peters B. Comparison real-time and intermittent triggered myocardial contrast echocardiography for quantification coronary stenosis severity and transmural perfusion gradient.  Circulation. 2001;  104 1550-1556
  • 43 Masugata H, Cotter B, Peters B. Assessment of coronary stenosis severity and transmural perfusion gradient by myocardial contrast echocardiography: Comparison of gray-scale B-mode with power doppler imaging.  Circulation. 2000;  102 1472-1433
  • 44 Wilke N M, Jerosch-Herold M, Zenovich A. et al . Magnetic resonance first pass myocardial perfusion imaging: clinical validation and future applications.  J Magn Reson Imaging. 1999;  10 676-685

Dr. Christian Oliver Ritter

Universität Würzburg, Institut für Röntgendiagnostik

Josef-Schneider-Straße 2, C 10

97080 Würzburg

Phone: ++49/9 31/20 13 41 30

Fax: ++49/9 31/20 13 41 31

Email: ritter@roentgen.uni-wuerzburg.de

    >