Rofo 2007; 179(11): 1166-1173
DOI: 10.1055/s-2007-963573
Experimentielle Radiologie

© Georg Thieme Verlag KG Stuttgart · New York

Molecular Coronary MR Imaging of Human Thrombi using EP-2104R, a Fibrin-Targeted Contrast Agent: Experimental Study in a Swine Model

Molekulare MR-Koronarbildgebung von humanen Thromben mit EP-2104R, einem fibrinspezifischen Kontrastmittel: experimentelle Untersuchungen in einem SchweinemodellE. Spuentrup1, 2 , M. Katoh1, 3 , A. J. Wiethoff4 , A. Buecker1, 3 , R. M. Botnar5, 6 , E. C. Parsons4 , R. W. Guenther1
  • 1Department of Diagnostic Radiology, Aachen Technical University, Aachen, Germany
  • 2Department of Radiology, University of Cologne, Germany
  • 3Department of Diagnostic and Interventional Radiology, University Hospital Saarland, Germany
  • 4EPIX Pharmaceuticals, Lexington, MA, USA
  • 5Department of Medicine (Cardiovascular Division) Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
  • 6Department of Nuclear Medicine, Technical University Munich, Munich, Germany
Further Information

Publication History

received: 6.7.2007

accepted: 26.8.2007

Publication Date:
19 October 2007 (online)

Zusammenfassung

Ziel: Molekulare MR-Bildgebung von humanem, in Patienten entstandenem Thrombusmaterial in einem Schweinemodell einer Koronarthrombose mittels eines fibrinspezifischen Kontrastmittels (EP-2104R, EPIX Pharmaceuticals, Lexington, Massachusetts, USA). Material und Methoden: Ex vivo aus menschlichem Blut erzeugte frische Thromben und Thromben, welche aus Patienten entfernt wurden, wurden katheterinterventionell in die Koronargefäße von neun Hausschweinen injiziert. Die molekulare MR-Bildgebung erfolgte mit einer navigatorgesteuerten EKG-synchronisierten 3D-Inversions-Gradientenechosequenz mit Schwarzblutkontrast, welche vor Thrombusplatzierung, nach Thrombusfreisetzung, aber vor Kontrastmittelgabe und ca. 2 Sunden nach systemischer (i. v.) Kontrastmittelgabe von 4 µmol/kgKG EP-2104R durchgeführt wurde. Die molekulare MR-Bildgebung wurde von 2 Radiologen analysiert und das Kontrast-zu-Rausch-Verhältnis (CNR) der Thromben bestimmt. Ferner wurde die Gd-Konzentration im Thrombus gemessen. Ergebnisse: Vor Thrombusplatzierung und auch nach Thrombusfreisetzung, aber vor Kontrastmittelgabe waren die Thromben nicht erkennbar. Nur auf den MR-Aufnahmen nach Gabe des fibrinspezifischen Kontrastmittels waren alle 10 Thromben (5 frische, ex vivo hergestellte und 5 Patiententhromben) selektiv und mit einem hohen Kontrast sichtbar (CNR > 12). Eine hohe Gd-Konzentration in den Thromben ( > 100 µM) wurde bestimmt. Schlussfolgerung: Das fibrinspezifische Kontrastmittel EP-2104R erlaubt die molekulare MR-Bildgebung von humanem Thrombusmaterial in einem Schweinemodell einer Koronarthrombose.

Abstract

Purpose: The aim of this study was to investigate the use of a fibrin-specific contrast agent (EP-2104R, EPIX Pharmaceuticals, Lexington, Massachusetts, USA) for targeted molecular magnetic resonance (MR) imaging of human clot material removed from patients in a model of coronary thrombosis in swine. Materials and Methods: Freshly ex vivo engineered clots from human blood and human in situ developed clots removed from patients were delivered into the coronary arteries of nine domestic swine. For MR imaging a navigator-gated, free-breathing, cardiac-triggered 3D inversion recovery black-blood gradient echo sequence was performed prior to clot delivery (baseline), after clot delivery but prior to contrast media administration, and two hours after systemic (i. v.) injection of 4 µmol/kg EP-2104R. MR images were analyzed by two investigators and the contrast-to-noise ratio and Gadolinium (Gd) concentration in the clots were assessed. Results: On baseline images and prior to contrast media application no thrombi were visible. Post contrast administration all 10 coronary emboli (five ex vivo engineered clots and five human clots removed from patients) were selectively visualized as white spots with a mean contrast-to-noise ratio to the blood pool and the surrounding tissue of > 12 and a mean Gd concentration of > 100 µM. Conclusion: Molecular MR imaging using the fibrin-targeted contrast agent EP-2104R allows selective visualization of human clot material in a model of coronary thrombosis in swine.

References

  • 1 Falk E, Shah P K, Fuster V. Coronary plaque disruption.  Circulation. 1995;  92 657-671
  • 2 Rentrop K P. Thrombi in acute coronary syndromes: revisited and revised.  Circulation. 2000;  101 1619-1626
  • 3 Ojio S, Takatsu H, Tanaka T. et al . Considerable time from the onset of plaque rupture and/or thrombi until the onset of acute myocardial infarction in humans: coronary angiographic findings within 1 week before the onset of infarction.  Circulation. 2000;  102 2063-2069
  • 4 Shinnar M, Fallon J T, Wehrli S. et al . The diagnostic accuracy of ex vivo MRI for human atherosclerotic plaque characterization.  Arterioscler Thromb Vasc Biol. 1999;  19 2756-2761
  • 5 Johnstone M T, Botnar R M, Perez A S. et al . In vivo magnetic resonance imaging of experimental thrombosis in a rabbit model.  Arterioscler Thromb Vasc Biol. 2001;  21 1556-1560
  • 6 Corti R, Osende J I, Fayad Z A. et al . In vivo noninvasive detection and age definition of arterial thrombus by MRI.  J Am Coll Cardiol. 2002;  39 1366-1373
  • 7 Yuan C, Kerwin W S. MRI of atherosclerosis.  J Magn Reson Imaging. 2004;  19 710-719
  • 8 Moody A R, Murphy R E, Morgan P S. et al . Characterization of complicated carotid plaque with magnetic resonance direct thrombus imaging in patients with cerebral ischemia.  Circulation. 2003;  107 3047-3052
  • 9 Fayad Z A, Fuster V, Fallon J T. et al . Noninvasive In Vivo Human Coronary Artery Lumen and Wall Imaging Using Black-Blood Magnetic Resonance Imaging.  Circulation. 2000;  102 506-510
  • 10 Botnar R M, Stuber M, Kissinger K V. et al . Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging.  Circulation. 2000;  102 2582-2587
  • 11 Kim W Y, Stuber M, Bornert P. et al . Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease.  Circulation. 2002;  106 296-299
  • 12 Flacke S, Fischer S, Scott M J. et al . Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques.  Circulation. 2001;  104 1280-1285
  • 13 Johansson L O, Bjornerud A, Ahlstrom H K. et al . A targeted contrast agent for magnetic resonance imaging of thrombus: implications of spatial resolution.  J Magn Reson Imaging. 2001;  13 615-618
  • 14 Yu X, Song S K, Chen J. et al . High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent.  Magn Reson Med. 2000;  44 867-872
  • 15 Botnar R M, Perez A S, Witte S. et al . In Vivo Molecular Imaging of Acute and Subacute Thrombosis Using a Fibrin-Binding Magnetic Resonance Imaging Contrast Agent.  Circulation. 2004;  109 2023-2029
  • 16 Botnar R, Buecker A, Wiethoff A J. et al . In vivo magnetic resonance imaging of coronary thrombosis using a fibrin-binding molecular magnetic resonance contrast agent.  Circulation. 2004;  110 1463-1466
  • 17 Spuentrup E, Buecker A, Katoh M. et al . Molecular magnetic resonance imaging of coronary thrombosis and pulmonary emboli with a novel fibrin-targeted contrast agent.  Circulation. 2005;  22 1377-1382
  • 18 Sirol M, Fuster V, Badimon J J. et al . Chronic thrombus detection with in vivo magnetic resonance imaging and a fibrin-targeted contrast agent.  Circulation. 2005;  112 1594-1600. Epub 2005
  • 19 Spuentrup E, Katoh M, Wiethoff A J. et al . Molecular magnetic resonance imaging of pulmonary emboli with a fibrin-specific contrast agent.  Am J Respir Crit Care Med. 2005;  172 494-500
  • 20 Spuentrup E, Ruebben A, Schaeffter T. et al . Magnetic resonance-guided coronary artery stent placement in a swine model.  Circulation. 2002;  105 874-879
  • 21 Spuentrup E, Buecker A, Stuber M. et al . Navigator-gated coronary magnetic resonance angiography using steady-state-free-precession: comparison to standard t2-prepared gradient-echo and spiral imaging.  Invest Radiol. 2003;  38 263-268
  • 22 Fleckenstein J L, Archer B T, Barker B A. et al . Fast short-tau inversion-recovery MR imaging.  Radiology. 1991;  179 499-504
  • 23 Kim W Y, Danias P G, Stuber M. et al . Coronary magnetic resonance angiography for the detection of coronary stenoses.  N Engl J Med. 2001;  345 1863-1869
  • 24 Botnar R M, Kim W Y, Bornert P. et al . 3D coronary vessel wall imaging utilizing a local inversion technique with spiral image acquisition.  Magn Reson Med. 2001;  46 848-854
  • 25 Choudhury R P, Fuster V, Badimon J J. et al . MRI and characterization of atherosclerotic plaque: emerging applications and molecular imaging.  Arterioscler Thromb Vasc Biol. 2002;  22 1065-1074
  • 26 Spuentrup E, Botnar R M. Coronary magnetic resonance imaging: visualization of the vessel lumen and the vessel wall and molecular imaging of arteriothrombosis.  Eur Radiol. 2006;  16 1-14
  • 27 Choudhury R P, Fuster V, Fayad Z A. Molecular, cellular and functional imaging of atherothrombosis.  Nat Rev Drug Discov. 2004;  3 913-25
  • 28 Bohm I, Heverhagen J T, Behe M. et al . Molecular imaging of apoptosis in cardiovascular diseases.  Fortschritt Röntgenstr. 2007;  179 780-789. Epub 2007
  • 29 Grimm J, Wunder A. Current state of molecular imaging research.  Fortschritt Röntgenstr. 2005;  177 326-337
  • 30 Lee T H, Goldman L. Evaluation of the patient with acute chest pain.  N Engl J Med. 2000;  342 1187-1195
  • 31 Prasad A, Mathew V, Holmes D R Jr. et al . Current management of non-ST-segment-elevation acute coronary syndrome: reconciling the results of randomized controlled trials.  Eur Heart J. 2003;  24 1544-1553
  • 32 Rittersma S Z, Wal A C, Koch K T. et al . Plaque instability frequently occurs days or weeks before occlusive coronary thrombosis: a pathological thrombectomy study in primary percutaneous coronary intervention.  Circulation. 2005;  111 1160-1165. Epub 2005
  • 33 Libby van der P. Act local, act global: inflammation and the multiplicity of “vulnerable” coronary plaques.  J Am Coll Cardiol. 2005;  45 1600-1602
  • 34 Casscells W, Naghavi M, Willerson J T. Vulnerable atherosclerotic plaque: a multifocal disease.  Circulation. 2003;  107 2072-2075
  • 35 Maseri A, Fuster V. Is there a vulnerable plaque?.  Circulation. 2003;  107 2068-2071
  • 36 Davies M J. Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995.  Circulation. 1996;  94 2013-2020
  • 37 Marder V J, Chute D J, Starkman S. et al . Analysis of thrombi retrieved from cerebral arteries of patients with acute ischemic stroke.  Stroke. 2006;  37 2086-2093. Epub 2006
  • 38 Maintz D, Ozgun M, Hoffmeier A. et al . Selective coronary artery plaque visualization and differentiation by contrast-enhanced inversion prepared MRI.  Eur Heart J. 2006;  27 1732-1736. Epub 2006
  • 39 Moody A R, Liddicoat A, Krarup K. Magnetic resonance pulmonary angiography and direct imaging of embolus for the detection of pulmonary emboli.  Invest Radiol. 1997;  32 431-440
  • 40 Paydarfar D, Krieger D, Dib N. et al . In vivo magnetic resonance imaging and surgical histopathology of intracardiac masses: distinct features of subacute thrombi.  Cardiology. 2001;  95 40-47
  • 41 Kampschulte A, Ferguson M S, Kerwin W S. et al . Differentiation of intraplaque versus juxtaluminal hemorrhage/thrombus in advanced human carotid atherosclerotic lesions by in vivo magnetic resonance imaging.  Circulation. 2004;  110 3239-3244. Epub 2004
  • 42 Fraser D G, Moody A R, Morgan P S. et al . Diagnosis of lower-limb deep venous thrombosis: a prospective blinded study of magnetic resonance direct thrombus imaging.  Ann Intern Med. 2002;  136 89-98
  • 43 Saam T, Cai J, Ma L. et al . Comparison of symptomatic and asymptomatic atherosclerotic carotid plaque features with in vivo MR imaging.  Radiology. 2006;  240 464-472
  • 44 Sitzer M, Muller W, Siebler M. et al . Plaque ulceration and lumen thrombus are the main sources of cerebral microemboli in high-grade internal carotid artery stenosis.  Stroke. 1995;  26 1231-1233
  • 45 Nighoghossian N, Derex L, Douek P. The vulnerable carotid artery plaque: current imaging methods and new perspectives.  Stroke. 2005;  36 2764-2772. Epub 2005
  • 46 Geuns R J, Wielopolski P A, Bruin de H G. et al . MR coronary angiography with breath-hold targeted volumes: preliminary clinical results.  Radiology. 2000;  217 270-277
  • 47 Nassenstein van K, Waltering K U, Eggebrecht H. et al . MR coronary angiography with MS-325, a blood pool contrast agent: comparison of an inversion recovery steady-state free precession with an inversion recovery fast low angle shot sequence in volunteers.  Fortschr Röntgenstr. 2006;  178 508-514. Epub 2006

Dr. Elmar Spuentrup MD

Department of RadiologyUniversity Hospital, University of Cologne

Kerpener Str. 62

50924 Cologne, Germany

Phone: ++49/221/478-42 00/42 20

Fax: ++49/221/478-67 87

Email: spuenti@rad.rwth-aachen.de

    >