Int J Sports Med 2008; 29(5): 384-389
DOI: 10.1055/s-2007-965569
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Efficiency of Wheelchair Propulsion and Effects of Strategy

J. P. Lenton1 , N. Fowler1 , L. van der Woude2 , V. L. Goosey-Tolfrey1
  • 1Exercise and Sport Science, The Manchester Metropolitan University, Cheshire, United Kingdom
  • 2Institute for Fundamental and Clinical Human Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
Further Information

Publication History

accepted after revision June 11, 2007

Publication Date:
18 September 2007 (online)

Abstract

The purpose of this study was to determine the contributions of arm frequency and propulsion mode on the internal work during submaximal wheelchair propulsion. Twelve able-bodied participants performed a V·O2 peak test on a wheelchair ergometer. On a separate occasion, six (4 min) submaximal exercise conditions employing two modes of propulsion (synchronous, SYN vs. asynchronous, ASY) at arm frequencies of 40 and 80 rev · min-1 were performed at 1.2 m · s-1 and 1.7 m · s-1. These conditions resulted in three push strategy combinations (ASY [20 : 20], SYN [40 : 40] & ASY [40 : 40]) at two speeds. Gross, net, work and delta efficiency were determined. The cost of unloaded exercise was significantly lower for the ASY [20 : 20] than both ASY and SYN [40 : 40] (0.49 vs. 0.58 and 0.57 L · min-1, respectively). All the efficiency indices decreased as velocity increased (p < 0.01). ASY [20 : 20] was the least efficient (gross and work) mode (4.2 ± 0.4 % and 6.2 ± 0.8 % respectively). Comparison of equal arm frequencies (ASY [40 : 40] vs. SYN [40 : 40]); found the efficiency to be lower for ASY propulsion (p < 0.05). Under the current testing conditions SYN propulsion mode offers greater efficiency during wheelchair propulsion.

References

  • 1 Brown D D, Knowlton R G, Hamill J, Schneider T L, Hetzler R K. Physiological and biomechanical differences between wheelchair-dependent and able-bodied subjects during wheelchair ergometry.  Eur J Appl Physiol. 1990;  60 179-182
  • 2 Dallmeijer A J, Zentgraaff I D, Zijp N I, van der Woude L HV. Sub-maximal physical strain and peak performance in handcycling versus hand-rim wheelchair propulsion.  Spinal Cord. 2004;  42 91-98
  • 3 Groot de S, Veeger D HEV, Hollander A P, van der Woude L HV. Wheelchair propulsion technique and mechanical efficiency after 3 wk of practice.  Med Sci Sports Exerc. 2002;  34 756-766
  • 4 Durnin J V, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years.  Br J Nutr. 1974;  32 77-97
  • 5 Gaesser G A, Brooks G A. Muscular efficiency during steady-rate exercise: effects of speed and work rate.  J Appl Physiol. 1975;  38 1132-1139
  • 6 Glaser R M, Sawka M N, Young R E, Suryaprasad A G. Applied physiology for wheelchair design.  J Physiol. 1980;  48 41-44
  • 7 Goosey V L, Campbell I G, Fowler N E. The relationship between three-dimensional wheelchair propulsion techniques and pushing economy.  J Appl Biomech. 1998;  14 412-427
  • 8 Goosey V L, Campbell I G, Fowler N E. Effect of push frequency on the economy of wheelchair racers.  Med Sci Sports Exerc. 2000;  32 174-181
  • 9 Goosey-Tolfrey V L, Kirk J H. Effect of push frequency and strategy variations on economy and perceived exertion during wheelchair propulsion.  Eur J Appl Physiol. 2003;  90 153-158
  • 10 Hintzy F, Tordi N. Mechanical efficiency during hand-rim wheelchair propulsion: effects of base-line subtraction and power output.  Clin Biomech. 2004;  19 343-349
  • 11 Hintzy F, Tordi N, Perrey S. Muscular efficiency during arm cranking and wheelchair exercise: a comparison.  Int J Sports Med. 2002;  23 408-414
  • 12 Marais G, Dupont L, Maillet M, Weisslans T, Vanvelcenaher J, Pelayo P. Cardiorespiratory and efficiency responses during arm and leg exercises with spontaneously chosen crank and pedal rates.  Ergonomics. 2002;  45 631-639
  • 13 Patterson P, Draper S. Selected comparisons between experienced and non-experienced individuals during manual wheelchair propulsion.  Biomed Sci Instrum. 1997;  33 477-481
  • 14 Peronnet F, Massicotte D. Table of non-protein respiratory quotient: an update.  Can J Sport Sci. 1991;  16 23-29
  • 15 Theisen D, Francaux M, Fayt A, Sturbois X. A new procedure to determine external power output during hand-rim wheelchair propulsion on a roller ergometer: a reliability study.  Int J Sports Med. 1996;  17 564-571
  • 16 van der Woude L HV, Bosmans I, Bervoets B, Veeger H EJ. Handcycling: different modes and gear ratios.  J Med Eng Tech. 2000;  24 242-249
  • 17 van der Woude L HV, Veeger H EJ, Dallmeijer A J, Janssen T WJ, Rozendaal L A. Biomechanics and physiology in active manual wheelchair propulsion.  Med Eng Physics. 2001;  23 713-733
  • 18 van der Woude L HV, Veeger H EJ, Rozendal R H, Sargeant A J. Optimum cycle frequencies in hand-rim wheelchair propulsion. Wheelchair propulsion technique.  Eur J Appl Physiol. 1989;  58 625-632
  • 19 Veeger H EJ, van der Woude L HV, Rozendal R H. Effect of hand-rim velocity on mechanical efficiency in wheelchair propulsion.  Med Sci Sports Exerc. 1992;  24 100-107
  • 20 Verellen J, Theisen D, Vanlandewijck Y. Influence of crank rate in hand cycling.  Med Sci Sports Exerc. 2004;  36 1826-1831
  • 21 Whipp B J, Wasserman K. Efficiency of muscular work.  J Appl Physiol. 1969;  26 644-648

Dr. PhD Victoria L. Goosey-Tolfrey

The Manchester Metropolitan University
Exercise and Sport Science

Cheshire

United Kingdom

Phone: + 44 0 15 09 22 63 02/3

Fax: + 44 0 15 09 22 63 01

Email: v.l.tolfrey@lboro.ac.uk

    >