Horm Metab Res 2007; 39(3): 192-196
DOI: 10.1055/s-2007-970417
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Site-specific Effect of Estradiol on Gene Expression in the Adipose Tissue of ob/ob Mice

S. Shinozaki 1 , T. Chiba 1 , K. Kokame 2 , T. Miyata 2 , M. Ai 1 , A. Kawakami 1 , E. Kaneko 1 , M. Yoshida 1 , K. Shimokado 1
  • 1Geriatrics and Vascular Medicine, Tokyo Medical and Dental University Graduate School, Yushima Bunkyo-ku, Tokyo, Japan
  • 2National Cardiovascular Center Research Institute, Fujishirodai, Suita, Osaka, Japan
Weitere Informationen

Publikationsverlauf

received 6. 7. 2006

accepted 31. 10. 2006

Publikationsdatum:
20. März 2007 (online)

Abstract

Sex hormones are likely to be involved in sex differences in adipose tissue distribution. To test whether estrogen regulates genes expressed in the adipose tissue in a site-specific manner, we studied the effect of exogenous estradiol on the gene expression in visceral and subcutaneous adipose tissues of male ob/ob mice. We screened genes expressed in a site- and sex-specific manner, and genes that were affected by exogenous estradiol by DNA chip analysis. They were verified by real-time PCR. Myosin heavy chain 2B (Myh4) and phosphoglycerate mutase muscle-specific subunit (Pgam) were expressed specifically in the subcutaneous adipose tissue, and uroplakin IIIb (UP3) was expressed specifically in the visceral adipose tissue. DEAD-box Y RNA helicase (DBY) and eukaryotic initiation factor 2 gamma Y (eIF2γ Y) were expressed only in male adipose tissue. X-chromosome inactive specific transcript (Xist) was expressed only in female adipose tissue. When estradiol was subcutaneously administrated to male mice, the expression of monocyte-chemoattractant protein-1 (MCP-1) and androgen receptor (AR) genes was regulated in a site-specific manner. The difference in the amount of estrogen receptor did not account for the site-specific effect of estrogen. Our findings show that estrogen affects the expression of some adipocyte genes in a site-specific manner.

References

  • 1 Björntorp P. The regulation of adipose tissue distribution in humans.  Int J Obes Relat Metab Disord. 1990;  20 291-302
  • 2 Couillard C, Bergeron N, Prud’homme D. et al . Gender difference in postprandial lipemia: importance of visceral adipose tissue accumulation.  Arterioscler Thromb Vasc Biol. 1999;  19 2448-2455
  • 3 Rodriguez-Cuenca S, Monjo M, Proenza AM, Roca P. Depot differences in steroid receptor expression in adipose tissue: possible role of the local steroid milieu.  Am J Physiol Endocrinol Metabol. 2005;  288 E200-E207
  • 4 Roca P, Rodriguez AM, Oliver P. et al . Brown adipose tissue response to cafeteria diet-feeding involves induction of the UCP2 gene and is impaired in female rats as compared to males.  Pflugers Arch. 1999;  438 628-634
  • 5 D’Eon TM, Souza SC, Aronovitz M, Obin MS, Fried SK, Greenberg AS. Estrogen regulation of adiposity and fuel partitioning: Evidence of genomic and non-genomic regulation of lipogenic and oxidative pathways.  J Biol Chem. 2005;  280 35983-35991
  • 6 Ohlsson C, Hellberg N, Parini P. et al . Obesity and disturbed lipoprotein profile in estrogen receptor-alpha-deficient male mice.  Biochem Biophys Res Commun. 2000;  278 640-645
  • 7 Cooke PS, Naaz A. Role of estrogens in adipocyte development and function.  Exp Biol Med (Maywood). 2004;  229 1127-1135
  • 8 Morrisonb RF, Farmer SR. Hormonal signaling and transcriptional control of adipocyte differentiation.  J Nutr. 2000;  130 3116S-3121S
  • 9 Jones ME, Thorburn AW, Britt KL. et al . Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity.  Proc Natl Acad Sci USA. 2000;  97 12735-12740
  • 10 Brann DW L, Sevilla LD, Zamorano PL, Mahesh VB. Regulation of leptin gene expression and secretion by steroid hormones.  Steroids. 1999;  64 659-663
  • 11 Filardo EJ. Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: a novel signaling pathway with potential significance for breast cancer.  J Steroid Biochem Mol Biol. 2002;  80 231-238
  • 12 Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER. A transmembrane intracellular estrogen receptor mediates rapid cell signaling.  Science. 2005;  307 1625-1630
  • 13 Störk S, Baumann K, Schacky CV, Angerer P. The effect of 17 beta-estradiol on MCP-1 serum levels in postmenopausal women.  Cardiovasc Res. 2002;  53 642-649
  • 14 Pervin S, Singh R, Rosenfeld ME, Navab M, Chaudhuri G, Nathan L. Estradiol suppresses MCP-1 expression In vivo: implications for atherosclerosis.  Arterioscler Thromb Vasc Biol. 1998;  18 1575-1582
  • 15 Malavazos AE, Cereda E, Morricone L, Coman C, Corsi MM, Ambrosi B. Monocyte chemoattractant protein-1: a possible link between visceral adipose tissue-associated inflammation and subclinical echocardiographic abnormalities in uncomplicated obesity.  Eur J Endocrinol. 2005;  153 871-877
  • 16 Deo R, Khera A, McGuire DK. et al . Association among plasma levels of monocyte chemoattractant protein-1, traditional cardiovascular risk factors, and subclinical atherosclerosis.  J Am Coll Cardiol. 2004;  44 1812-1818
  • 17 Inadera H, Egashira K, Takemoto M, Ouchi Y, Matsushima K. Increase in circulating levels of monocyte chemoattractant protein-1 with aging.  J Interferon Cytokine Res. 1999;  19 1179-1182
  • 18 Frazier-Jessen MR, Kovacs EJ. Estrogen modulation of JE/monocyte chemoattractant protein-1 mRNA expression in murine macrophages.  J Immunol. 1995;  154 1838-1845
  • 19 Seli E, Kayisli UA, Selam B, Seli M, Arici A. Estradiol suppresses vascular monocyte chemotactic protein-1 expression during early atherogenesis.  Am J Obstet Gynecol. 2002;  187 1544-1549
  • 20 Kanda N, Watanabe S. 17Beta-estradiol inhibits MCP-1 production in human keratinocytes.  J Invest Dermatol. 2003;  120 1058-1066
  • 21 Kovacs EJ, Faunce DE, Ramer-Quinn DS, Mott FJ, Dy PW, Frazier-Jessen MR. Estrogen regulation of JE/MCP-1 mRNA expression in fibroblasts.  J Leukoc Biol. 1996;  59 562-568
  • 22 Sartipy P, Loskutoff DJ. Monocyte chemoattractant protein-1 in obesity and insulin resistance.  Proc Natl Acad Sci USA. 2003;  100 7265-7270
  • 23 Cardone A, Angelini F, Varriale B. Autoregulation of estrogen and androgen receptor mRNAs and downregulation of androgen receptor mRNA by estrogen in primary cultures of lizard testis cells.  Gen Comp Endocrinol. 1998;  110 227-236
  • 24 McAbee MD, Doncarlos LL. Estrogen, but not androgens, regulates androgen receptor messenger ribonucleic acid expression in the developing male rat forebrain.  Endocrinology. 1999;  140 3674-3681
  • 25 Fan W, Yanase T, Nomura M. et al . Androgen receptor null male mice develop late-onset obesity caused by decreased energy expenditure and lipolytic activity but show normal insulin sensitivity with high adiponectin secretion.  Diabetes. 2005;  54 1000-1008
  • 26 Matsumoto T, Takeyama K, Sato T, Kato S. Androgen receptor functions from reverse genetic models.  J Steroid Biochem Mol Biol. 2003;  85 95-99
  • 27 Blouin K, Richard C, Bélanger C. et al . Local androgen inactivation in abdominal visceral adipose tissue.  J Clin Endocrinol Metab. 2003;  88 5944-5950
  • 28 Dam KG, Breda E, Schaart G. et al . Investigation of the expression and localization of glucose transporter 4 and fatty acid translocase/CD36 in equine skeletal muscle.  Am J Vet Res. 2004;  65 951-956
  • 29 Kell R, Pierce H, Swoap SJ. PGAM-M expression is regulated pretranslationally in hindlimb muscles and under altered loading conditions.  J Appl Physiol. 1999;  86 236-242
  • 30 Sakakibara K, Sato K, Yoshino K. et al . Molecular identification and characterization of Xenopus egg uroplakin III, an egg raft-associated transmembrane protein that is tyrosine-phosphorylated upon fertilization.  J Biol Chem. 2005;  280 15029-15037
  • 31 Ida K, Wada J, Zhang H. et al . Identification of genes specifically expressed in the accumulated visceral adipose tissue of OLETF rats.  J Lipid Res. 2000;  41 1615-1622
  • 32 Foresta C, Ferlin A, Moro E. Deletion and expression analysis of AZFa genes on the human Y chromosome revealed a major role for DBY in male infertility.  Hum Mol Genet. 2000;  9 1161-1169
  • 33 Ehrmann IE, Ellis PS, Mazeyrat S. et al . Characterization of genes encoding translation initiation factor eIF-2gamma in mouse and human: sex chromosome localization, escape from X-inactivation and evolution.  Hum Mol Genet. 1998;  7 1725-1737
  • 34 Xu N, Tsai CL, Lee JT. Transient homologous chromosome pairing marks the onset of X inactivation.  Science. 2006;  311 1149-1152

Correspondence

K. Shimokado

Geriatrics and Vascular Medicine · Tokyo Medical and Dental University Graduate School

1-5-45 Yushima Bunkyo-ku

Tokyo 113-8519

Japan

Telefon: +81/3/58 03 59 68

Fax: +81/3/58 03 02 67

eMail: k.shimoka.vasc@tmd.ac.jp

    >