Int J Sports Med 2008; 29(7): 574-578
DOI: 10.1055/s-2007-989263
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Reliability of Power Output during Dynamic Cycling

C. R. Abbiss1 , G. Levin1 , M. R. McGuigan1 , P. B. Laursen1
  • 1School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Perth, Australia
Further Information

Publication History

accepted after revision September 5, 2007

Publication Date:
30 November 2007 (online)

Abstract

The aims of the present study were to determine the influence of familiarization on the reliability of power output during a dynamic 30-km cycling trial and to determine the test-retest reliability following a 6-week period. Nine trained male cyclists performed five self-paced 30-km cycling trials, which contained three 250-m sprints and three 1-km sprints. The first three of these trials were performed in consecutive weeks (Week 1, Week 2 and Week 3), while the latter two trials were consecutively conducted 6 wk following (Week 9 and Week 10). Subjects were instructed to complete each sprint, as well as the entire trial in the least time possible. Reproducibility in average power output over the entire 30-km trial for Week 2 and 3 alone (coefficient of variation, CV = 2.4 %, intra-class correlation coefficient, ICC = 0.93) was better than for Week 1 and 2 (CV = 5.5 %, ICC = 0.77) and Week 9 and 10 alone (CV = 5.3 %, ICC = 0.57). These results indicate that high reliability during a dynamic 30-km cycling trial may be obtained after a single familiarization trial when subsequent trials are performed within 7 days. However, if cyclists do not perform trials for six weeks, the same level of reliability is not maintained.

References

  • 1 Bishop D. Reliability of a 1-h endurance performance test in trained female cyclists.  Med Sci Sports Exerc. 1997;  29 554-559
  • 2 Glaister M, Stone M H, Stewart A M, Hughes M, Moir G L. The reliability and validity of fatigue measures during short-duration maximal-intensity intermittent cycling.  J Strength Cond Res. 2004;  18 459-462
  • 3 Glaister M, Stone M H, Stewart A M, Hughes M, Moir G L. Reliability of power output during short-duration maximal-intensity intermittent cycling.  J Strength Cond Res. 2003;  17 781-784
  • 4 Hickey M S, Costill D L, McConell G K, Widrick J J, Tanaka H. Day to day variation in time trial cycling performance.  Int J Sports Med. 1992;  13 467-470
  • 5 Hopkins W G. Calculating likely (confidence) limits and likelihoods for true values (Excel spreadsheet). A new view of statistics sportsciorg: Internet Society for Sport Science, sportsciorg/resource/stats/xrelyxls. 2002
  • 6 Hopkins W G. Reliability from consecutive pairs of trials (Excel spreadsheet). A new view of statistics sportsciorg. Internet Society for Sport Science, sportsciorg/resource/stats/xrelyxls. 2000
  • 7 Hopkins W G, Schabort E J, Hawley J A. Reliability of power in physical performance tests.  Sports Med. 2001;  31 211-234
  • 8 Jeukendrup A, Saris W H, Brouns F, Kester A D. A new validated endurance performance test.  Med Sci Sports Exerc. 1996;  28 266-270
  • 9 Laursen P B, Francis G T, Abbiss C R, Newton M, Nosaka K. Reliability of time-to-exhaustion versus time-trial running tests in runners.  Med Sci Sport Exerc. 2007;  39 1374-1379
  • 10 Laursen P B, Shing C M, Jenkins D G. Reproducibility of a laboratory-based 40-km cycle time-trial on a stationary wind-trainer in highly trained cyclists.  Int J Sports Med. 2003;  24 481-485
  • 11 Martin J C, Diedrich D, Coyle E F. Time course of learning to produce maximum cycling power.  Int J Sports Med. 2000;  21 485-487
  • 12 McGawley K, Bishop D. Reliability of a 5 × 6-s maximal cycling repeated-sprint test in trained female team-sport athletes.  Eur J Appl Physiol. 2006;  98 383-393
  • 13 Moir G, Button C, Glaister M, Stone M H. Influence of familiarization on the reliability of vertical jump and acceleration sprinting performance in physically active men.  J Strength Cond Res. 2004;  18 276-280
  • 14 Moir G, Sanders R, Button C, Glaister M. The influence of familiarization on the reliability of force variables measured during unloaded and loaded vertical jumps.  J Strength Cond Res. 2005;  19 140-145
  • 15 Palmer G S, Dennis S C, Noakes T D, Hawley J A. Assessment of the reproducibility of performance testing on an air-braked cycle ergometer.  Int J Sports Med. 1996;  17 293-298
  • 16 Saunders A G, Dugas J P, Tucker R, Lambert M I, Noakes T D. The effects of different air velocities on heat storage and body temperature in humans cycling in a hot, humid environment.  Acta Physiol Scand. 2005;  183 241-255
  • 17 Schabort E J, Hawley J A, Hopkins W G, Blum H. High reliability of performance of well-trained rowers on a rowing ergometer.  J Sports Sci. 1999;  17 627-632
  • 18 Schabort E J, Hawley J A, Hopkins W G, Mujika I, Noakes T D. A new reliable laboratory test of endurance performance for road cyclists.  Med Sci Sports Exerc. 1998;  30 1744-1750
  • 19 Schabort E J, Hopkins W G, Hawley J A. Reproducibility of self-paced treadmill performance of trained endurance runners.  Int J Sports Med. 1998;  19 48-51
  • 20 St Clair Gibson A, Lambert M I, Noakes T D. Neural control of force output during maximal and submaximal exercise.  Sports Med. 2001;  31 637-650
  • 21 Ulmer H V. Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychophysiological feedback.  Experientia. 1996;  52 416-420
  • 22 Watt K K, Hopkins W G, Snow R J. Reliability of performance in repeated sprint cycling tests.  J Sci Med Sport. 2002;  5 354-361

 Mr.
Chris Richard AbbissBSc. Sports Science 

Edith Cowan University
School of Exercise, Biomedical and Health Sciences

100 Joondalup Drive, Joondalup

6168 Perth

Australia

Phone: + 61 8 63 04 51 56

Fax: + 61 8 63 04 50 36

Email: c.abbiss@ecu.edu.au

    >