Abstract
Objective: It is a common clinical experience that type 2 diabetic patients are susceptible
to opportunistic infections. The underlying reasons for this immune deficiency are
not yet understood. Dendritic cells (DC) play a key role in initiating innate and
adapted immune responses.
Design: In order to investigate changes in the DC compartment in the peripheral blood in
type 2 diabetes, we analyzed blood from patients under poor and good metabolic control
and compared them to healthy controls.
Patients: 5 mls of blood were collected from 15 healthy controls, 15 diabetic patients with
an HbA1c <7.0 and 15 patients with an HbA1c >9.5%. Age range was 44-80 years. Patients
were age-matched with the control group.
Measurement: Blood DC were enumerated by flow cytometry after staining with antibodies against
the blood dendritic cells antigens 1-3 (BDCA 1-3). This allows quantification of the
DC subtypes: myeloid dendritic cells type 1 (mDC1, mDC2) and plasmacytoid dendritic
cells (pDC).
Results: The relative and absolute frequency for both mDC1 and pDC was clearly diminished
in patients with poor metabolic control as compared to healthy controls. In patients
with good metabolic control the reduction of DC was less pronounced but still significant,
particularly for mDC1.
Conclusion: Hyperglycemic metabolism does affect the pool of peripheral DCs and leads to a reduction
of both, mDC1 and pDC. Even patients considered to be under good metabolic control
appear to have a reduced peripheral pool of DC.
Key words
type 2 diabetes - dendritic cells - immune deficiency
References
- 1
Müller LM, Gorter KJ, Hak E, Goudzwaard WL, Schellevis FG, Hoepelman AI, Rutten GE.
Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus.
Clin Infect Dis.
2005;
41
281-288
- 2
Shah BR, Hux JE.
Quantifying the risk of infectious diseases for people with diabetes.
Diab Care.
2003;
26
510-513
- 3
Balasoiu D, Kessel KC van, Kats-Renaud HJ van, Collet TJ, Hoepelman AI.
Granulocyte function in women with diabetes and asymptomatic bacteriuria.
Diab Care.
1997;
20
392-395
- 4
Patterson JE, Andriole VT.
Bacterial urinary tract infections in diabetes.
Infect Dis Clin North Am.
1997;
11
735-750
- 5
Joshi N, Caputo GM, Weitekamp MR, Karchmer AW.
Infections in patients with diabetes mellitus.
N Engl J Med.
1999;
341
1906-1912
- 6 Boyko EJ, Lipsky BA. Infection and diabetes. In Harris MI, Cowie CC, Stern MP, Boyko
EJ, Reiber GE, Bennet PH, Eds.
Diabetes in America. 2nd ed. Bethesda, MD, National Institute of Health 1995: 485-499
- 7
Koziel H, Koziel MJ.
Pulmonary complications of diabetes mellitus.
Pneumonia. Infect Dis Clin North Am.
1995;
9
65-69
- 8
Calvet HM, Yoshikawa TT.
Infections in diabetes.
Infect Dis Clin North Am.
2001;
15
407-421
- 9
Pozzilli P, Leslie RD.
Infections and diabetes: mechanisms and prospects for prevention.
Diab Med.
1994;
11
935-941
- 10
Delamaire M, Maugendre D, Moreno M, Goff MC Le, Allannic H, Genetet B.
Impaired leucocyte functions in diabetic patients.
Diab Med.
1997;
14
29-34
- 11
Gallacher SJ, Thomson G, Fraser WD, Fisher BM, Gemmell CG, MacCuish AC.
Neutrophil bactericidal function in diabetes mellitus: evidence for association with
blood glucose control.
Diab Med.
1995;
12
916-920
- 12
Arafat HA, Lada E, Katakam AK, Amin N.
Osteopontin deficiency impacts the pancreatic TH1/TH2 cytokine profile following multiple
low dose streptozotocin-induced diabetes.
Exp Clin Endocrinol Diabetes.
2006;
114
555-562
- 13
Mostafazadeh A, Herder C, Haastert B, Hanifi-Moghaddam P, Schloot N, Koenig W, Illig T,
Thorand B, Holle R, Eslami MB, Kolb H. KORA Group .
Association of humoral immunity to human Hsp60 with the IL-6 gene polymorphism C-174G
in patients with type 2 diabetes and controls.
Horm Metab Res.
2005;
37
257-263
- 14
Granucci F, Foti M, Ricciardi-Castagnoli P.
Dendritic cell biology.
Adv Immun.
2005;
88
193-233
- 15
Zhang Z, Wang FS.
Plasmacytoid dendritic cells act as the most competent cell type in linking antiviral
innate and adaptive immune responses.
Cell Mol Immun.
2005;
2
411-417
- 16
Rossi M, Young JW.
Human dendritic cells: potent antigen-presenting cells at the crossroads of innate
and adaptive immunity.
J Immun.
2005;
175
1373-1381
- 17
Takahashi K, Honeyman MC, Harrison LC.
Impaired yield, phenotype, and function of monocyte-derived dendritic cells in humans
at risk for insulin-dependent diabetes.
J Immun.
1998;
161
2629-2635
- 18
Poligone B, Weaver Jr DJ, Sen P, Baldwin Jr AS, Tisch R.
Elevated NF-kappaB activation in nonobese diabetic mouse dendritic cells results in
enhanced APC function.
J Immunol.
2002;
168
188-196
- 19
Weaver Jr DJ, Poligone B, Bui T, Abdel-Motal UM, Baldwin Jr AS, Tisch R.
Dendritic cells from nonobese diabetic mice exhibit a defect in NF-kappa B regulation
due to a hyperactive I kappa B kinase.
J Immunol.
2001;
167
1461-1468
- 20
Morin J, Chimenes A, Boitard C, Berthier R, Boudaly S.
Granulocyte-dendritic cell unbalance in the non-obese diabetic mice.
Cell Immun.
2003;
223
13-25
- 21
Spatz M, Eibl N, Hink S, Wolf HM, Fischer GF, Mayr WR, Schernthaner G, Eibl MM.
Impaired primary immune response in type-1 diabetes. Functional impairment at the
level of APCs and T-cells.
Cell Immun.
2003;
221
5-26
- 22
MacDonald KP, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DN.
Characterization of human blood dendritic cell subsets.
Blood.
2002;
100
4512-4520
- 23
Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S, Buck DW, Schmitz J.
BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells
in human peripheral blood.
J Immunol.
2001;
65
6037-6046
- 24
Robinson SP, Patterson S, English N, Davies D, Knight SC, Reid CD.
Human peripheral blood contains two distinct lineages of dendritic cells.
Eur J Immun.
1999;
29
2769-2778
- 25
Rissoan MC, Soumelis V, Kadowaki N, Grouard G, Briere F, Waal Malefyt R de, Liu YJ.
Reciprocal control of T helper cell and dendritic cell differentiation.
Science.
1999;
283
1183-1186
- 26
Penna G, Vulcano M, Sozzani S, Adorini L.
Differential migration behavior and chemokine production by myeloid and plasmacytoid
dendritic cells.
Hum Immunol.
2002;
63
1164-1171
- 27
Jonuleit H, Schmitt E, Steinbrink K, Enk AH.
Dendritic cells as a tool to induce anergic and regulatory T cells.
Trends Immunol.
2001;
22
394-400
- 28
Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H, Lanzavecchia A, Colonna M.
Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of
type I interferon.
Nat Med.
1999;
5
919-923
- 29
Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly FA, Shah K, Ho S, Antonenko S,
Liu YJ.
The nature of the principal type 1 interferon-producing cells in human blood.
Science.
1999;
284
1835-1837
- 30
Chang CC, Wright A, Punnonen J.
Monocyte-derived CD1a+ and CD1a- dendritic cell subsets differ in their cytokine production
profiles, susceptibilities to transfection, and capacities to direct Th cell differentiation.
J Immunol.
2000;
165
3584-3591
- 31
Ito T, Amakawa R, Inaba M, Ikehara S, Inaba K, Fukuhara S.
Differential regulation of human blood dendritic cell subsets by IFNs.
J Immunol.
2001;
166
2961-2969
- 32
Woodhead MA, Macfarlane JT, MacCracken JS, Rose DH, Finch RG.
Prospective study of the aetiology and outcome of pneumonia in the community.
Lancet.
1987;
211
((8534))
671-674
- 33
Marrie TJ.
Bacteraemic pneumococcal pneumonia: a continuously evolving disease.
J Infect.
1992;
24
247-255
- 34
Bouter KP, Diepersloot RJ, Romunde LK van, Uitslager R, Masurel N, Hoekstra JB, Erkelens DW.
Effect of epidemic influenza on ketoacidosis, pneumonia and death in diabetes mellitus:
a hospital register survey of 1976-1979 in The Netherlands.
Diabetes Res Clin Pract.
1991;
12
61-68
- 35
Kass EH.
Bacteriuria and the diagnosis of infections of the urinary tract; with observations
on the use of methionine as a urinary antiseptic.
AMA Arch Intern Med.
1957;
100
709-714
- 36
Hansen RO.
Bacteriuria in diabetic and non-diabetic out-patients.
Acta Med Scand.
1964;
176
721-730
- 37
Alexiewicz JM, Kumar D, Smogorzewski M, Klin M, Massry SG.
Polymorphonuclear leukocytes in non-insulin-dependent diabetes mellitus: abnormalities
in metabolism and function.
Ann Intern Med.
1999;
123
919-924
- 38
Bouter KP, Meyling FH, Hoekstra JB, Masurel N, Erkelens DW, Diepersloot RJ.
Influence of blood glucose levels on peripheral lymphocytes in patients with diabetes
mellitus.
Diabetes Res.
1992;
19
77-80
- 39
Valerius NH, Eff C, Hansen NE, Karle H, Nerup J, Soeberg B, Sorensen SF.
Neutrophil and lymphocyte function in patients with diabetes mellitus.
Acta Med Scand.
1982;
211
463-467
- 40
Teig N, Moses D, Gieseler S, Schauer U.
Age-related changes in human blood dendritic cell subpopulations.
Scand J Immunol.
2002;
55
453-457
- 41
Della Bella S, Bierti L, Presicce P, Arienti R, Valenti M, Saresella M, Vergani C,
Villa ML.
Peripheral blood dendritic cells and monocytes are differently regulated in the elderly.
Clin Immunol.
2007;
122
220-128
- 42
Narbutt J, Lesiak A, Zak-Prelich M, Wozniacka A, Sysa-Jedrzejowska A, Tybura M, Robak T,
Smolewski P.
The distribution of peripheral blood dendritic cells assayed by a new panel of anti-BDCA
monoclonal antibodies in healthy representatives of the polish population.
Cell Mol Biol Lett.
2004;
9
497-509
- 43
Cederblad B, Blomberg S, Vallin H, Perers A, Alm GV, Ronnblom L.
Patients with systemic lupus erythematosus have reduced numbers of circulating natural
interferon-alpha- producing cells.
J Autoimm.
1998;
11
465-470
- 44
Jongbloed SL, Lebre MC, Fraser AR, Gracie JA, Sturrock RD, Tak PP, McInnes IB.
Enumeration and phenotypical analysis of distinct dendritic cell subsets in psoriatic
arthritis and rheumatoid arthritis.
Arth Res.
2005;
, Ther 8
R15
- 45
Kunitani H, Shimizu Y, Murata H, Higuchi K, Watanabe A.
Phenotypic analysis of circulating and intrahepatic dendritic cell subsets in patients
with chronic liver diseases.
Journal of Hepatology.
2002;
36
734-741
- 46
Yilmaz A, Weber J, Cicha I, Stumpf C, Klein M, Raithel D, Daniel WG, Garlichs CD.
Decrease in circulating myeloid dendritic cell precursors in coronary artery disease.
J Am Coll Cardiol.
2006;
48
70-80
- 47
Blondet JJ, Beilman GJ.
Glycemic control and prevention of perioperative infection.
Curr Opin Crit Care.
2007;
13
421-427
- 48
Tennenberg SD, Finkenauer R, Dwivedi A.
Absence of lipopolysaccharide-induced inhibition of neutrophil apoptosis in patients
with diabetes.
Arch Surg.
1999;
134
1229-1233
- 49
Catalan MP, Reyero A, Egido J, Ortiz A.
Acceleration of neutrophil apoptosis by glucose-containing peritoneal dialysis solutions:
role of caspases.
J Am Soc Nephrol.
2001;
12
2442-2449
- 50
Donaghy H, Pozniak A, Gazzard B, Qazi N, Gilmour J, Gotch F, Patterson S.
Loss of blood CD11c(+) myeloid and CD11c(-) plasmacytoid dendritic cells in patients
with HIV-1 infection correlates with HIV-1 RNA virus load.
Blood.
2001;
15
2574-2576
- 51
Chehimi J, Campbell DE, Azzoni L, Bacheller D, Papasavvas E, Jerandi G, Mounzer K,
Kostman J, Trinchieri G, Montaner LJ.
Persistent decreases in blood plasmacytoid dendritic cell number and function despite
effective highly active antiretroviral therapy and increased blood myeloid dendritic
cells in HIV-infected individuals.
J Immun.
2002;
168
4796-4801
- 52
Summers KL, Marleau AM, Mahon JL, MacManus R, Hramiak I, Singh B.
Reduced IFN-alpha secretion by blood dendritic cells in human diabetes.
Clin Immun.
2006;
121
81-89
- 53
Dunaif A.
Insulin resistance in women with polycystic ovary syndrome.
Fertil Steril.
2006;
86
(Suppl 1)
S13-14
Correspondence
PD Dr. med. C.C. Seifarth
Praxis für Endokrinologie
Weichsar Weg 5
93059 Regensburg
Germany
Telefon: +49/941/20 82 77 77
Fax: +49/941/59 89 308
eMail: seifarth@hotmail.com