Horm Metab Res 2007; 39(11): 806-812
DOI: 10.1055/s-2007-991167
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Diverse FSH and Testosterone Signaling Pathways in the Sertoli Cell

E. S. Loss 1 , A. P. Jacobus 1 , 2 , G. F. Wassermann 1
  • 1Departamento de Fisiologia, ICBS, UFRGS, Porto Alegre, RS, Brazil
  • 2Centro Universitário Metodista IPA, Porto Alegre, RS, Brazil
Further Information

Publication History

received 03.01.2007

accepted 24.04.2007

Publication Date:
09 November 2007 (online)

Abstract

FSH and testosterone exert different regulatory effects on the seminiferous epithelium; they act through multiple and complex signaling routes to direct the development of the germ cells into mature spermatozoa. In addition to their well-known pathways of action, both hormones have recently been recognized to have new signaling routes that are linked to the Ca2+ ion, including, among others, the regulation of cell proliferation by FSH and the regulation of cell migration by testosterone.

References

  • 1 Skinner MK. Cell-c ll interactions in the testis.  Endocr Rev. 1991;  12 45-77
  • 2 Jegou B. The Sertoli-germ cell communication network in mammals.  Int Rev Cytol. 1993;  147 25-96
  • 3 Mruk DD, Cheng CY. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis.  Endocr Rev. 2004;  25 747-806
  • 4 Mruk DD, Cheng CY. Cell-cell interactions at the ectoplasmic specialization in the testis.  Trends Endocrinol Metab. 2004;  15 439-447
  • 5 Cheng CY, Mruk DD. Cell junctions’ dynamics in the testis: Sertoli-germ cell interactions and male contraceptive development.  Physiol Rev. 2002;  82 825-874
  • 6 Carreau S, Foucault P, Drosdowsky MA. La Cellule de Sertoli: aspects fonctionnels compares chez le rat, le porc et l’homme.  Annal Endocrinol. 1994;  55 203-220
  • 7 Silva FRMB, Leite LD, Wassermann GF. Rapid signal transduction in Sertoli cells.  Eur J Endocrinol. 2002;  147 425-433
  • 8 Walker WH, Cheng J. FSH and testosterone signaling in Sertoli cells.  Reproduction. 2005;  130 15-28
  • 9 Marinissen MJ, Gutkind JS. G protein-coupled receptors and signalling networks: emerging paradigms.  Trends Pharmacol Sci. 2001;  22 368-376
  • 10 Meroni SB, Riera MF, Pellizzari EH, Gallardo MN, Cigorraga SB. FSH activates phosphatidylinositol 3-kinase/protein kinase B signalling pathway in 20-day-old Sertoli cells independently of IGF-I.  J Endocrinology. 2004;  180 257-265
  • 11 Cunnigham MA, Zhu Q, Unterman TG, Hammond JM. Follicle-stimulating hormone promotes nuclear exclusion of the forkhead transcription factor Fox 01 via phosphatidylinositol 3-kinase in porcine granulose cells.  Endocrinology. 2003;  144 5585-5594
  • 12 Babu PS, Krishnamurthy H, Chedrese PJ. Activation of extracellular-regulated kinase pathway in ovarian granu osa cells by the novel growth factor type 1 follicle-stimulating hormone receptor.  J Biol Chem. 2000;  275 27615-27626
  • 13 Wassermann GF, Loss ES. Effect of calcium channel blocker, verapamil, on amino acid uptake stimulated by FSH in rat testes.  Med Sci Res. 1989;  17 779-780
  • 14 Wassermann GF, Monti Bloch L, Grillo ML, Silva FRMB, Loss ES, Macconnell LL. Electrophysiological changes of Sertoli cells produced by acute administration of amino acid and FSH.  Horm Metab Res. 1992;  24 326-328
  • 15 Wassermann GF, Monti Bloch L, Macconnell LL, Grillo ML. FSH-induced rapid hyperpolarization followed by a Ca2+-channel mediated depolarization in rat Sertoli cell.  Med Sci Res. 1990;  18 175-176
  • 16 Lalevee N, Rogier C, Becq F, Joffre M. Acute effects of adenosine triphosphates, cyclic 3′,5′-adenosine monophosphates, and follicle-stimulating hormone on cytosolic calcium level in cultured immature rat Sertoli cells.  Biol Reprod. 1999;  61 343-352
  • 17 Nakashima M, Vanhoutte PM. Isoproterenol causes hyperpolarization through opening of ATP-sensitive potassium channels in vascular smooth muscle of the canine saphenous vein.  J Pharmacol Exp Ther. 1995;  272 379-384
  • 18 Jacobus AP, Rodrigues DO, Borba PF, Loss ES, Wassermann GF. Isoproterenol opens K+ ATP channels via a β2 adrenoceptor-linked mechan-ism in Sertoli cells from immature rats.  Horm Metab Res. 2005;  37 198-204
  • 19 Grasso P, Reichert LE. Follicle-stimulating hormone receptor mediated uptake of 45Ca2+ by proteoliposomes and culture rat Sertoli cells: evidence for involvement of voltage-activated and voltage independent calcium channels.  Endocrinology. 1989;  125 3029-3036
  • 20 Grasso P, Reichert LE. Follicle-stimulating hormone receptor-mediated uptake of 45Ca2+ by cultured rat Sertoli cells does not require activa-tion of cholera toxin- or pertussis toxin-sensitive guanine nucleotide binding proteins or adenylate cyclase.  Endocrinology. 1990;  127 949-956
  • 21 Sharma OP, Flores JA, Leon  DA, Velhuis JD. Cellular basis for follicle-stimulating hormone-stimulation in single rat Sertoli cells: possible dissociation from effects of adenosine 3′,5′-monophosphate.  Endocrinology. 1994;  134 1915-1923
  • 22 Irusta D, Wassermann GF. Factors influencing the uptake of [α-14C] aminoisobutyric acid by rat testes.  J Endocrinol. 1974;  60 463-471
  • 23 Spritzer PM, Wassermann GF. Amino acid uptake and protein synthesis in rat testes: stimulation by dissociable factors.  Horm Metab Res. 1985;  17 237-240
  • 24 Wassermann GF, Monti Bloch L, Grillo ML, Silva FRMB, Loss ES, Macconnell LL. Biochemical factors involved in the FSH action on amino acid transport in immature rat testes.  Horm Metab Res. 1992;  24 276-279
  • 25 Dahia CL, Rao AJ. Regulation of FSH receptor, PKIβ, IL-6 and calcium mobilization: Possible mediators of differential action of FSH.  Mol Cell Endocrinol. 2006;  247 73-81
  • 26 Babu PS, Danilovich N, Sairam MR. Hormone-induced receptor gene splicing: enhanced expression of the growth factor type I follicle-stimulating hormone receptor motif in the developing mouse ovary as a new paradigm in growth regulation.  Endocrinology. 2001;  142 381-389
  • 27 Touyz RM, Jiang L, Sairam MR. Follicle-stimulating hormone mediated calcium signaling by the alternatively spliced growth factor type I receptor.  Biol Reprod. 2000;  62 1067-1074
  • 28 Sairam MR, Jiang LG, Yarney TA, Khan H. Alternative splicing converts the G-protein coupled follitropin receptor gene into a growth factor type I receptor: implications for pleiotropic actions of the hormone.  Mol Reprod Dev. 1997;  48 471-479
  • 29 Simoni M, Nieschlag E, Grommol J. Isoform and single nucleotide polymorphisms of the FSH receptor gene: implications for human reproduction.  Hum Reprod Update. 2002;  8 413-421
  • 30 Song GJ, Park YS, Lee YS, Lee CC, Kang IS. Alternatively spliced variants of the follicle-stimulating hormone receptor gene in the testis of infertile men.  Fertil St ril. 2002;  77 499-504
  • 31 Yarney TA, Jiang L, Khan H, MacDonald EA, Laird DW, Sairam MR. Molecular cloning, structure, and expression of a testicular follitropin receptor with selective alteration in the carboxy terminus that affects signaling function.  Mol Reprod Dev. 1997;  48 458-470
  • 32 Sairam MR, Babu PS. The tale of follitropin receptor diversity: A recipe for fine tuning gonadal responses?.  Mol Cell Endocrinol. 2007;  260-262 163-171
  • 33 Khan SA, Ndjountche L, Pratchard L, Spicer LJ, Davis JS. Follicle-stimulating hormone amplifies insulin-like growth factor I-mediated activation of AKT/protein kinase B signaling in immature rat Sertoli cells.  Endocrinology. 2002;  143 2259-2267
  • 34 Oonk RB, Grootegoed JA. Insulin-like growth factor I (IGF-I) receptors on Sertoli cells from immature rats and age-dependent testicular binding of IGF-I and insulin.  Mol Cell Endocrinol. 1988;  55 33-43
  • 35 Sriraman V, Anbalagan M, Rao AJ. Hormonal regulation of Leydig cell proliferation and differentiation in rodent testis: a dynamic interplay between gonadotrophins and testicular factors.  Reprod Biomed Online. 2005;  11 507-518
  • 36 Chatelain PG, Naville D, Saez JM. Somatomedin C/insulin-like growth factor 1 material secreted by porcine Sertoli cells in vitro: characterization and regulation.  Biochem Biophys Res Commun. 1987;  146 1009-1017
  • 37 Closet J, Gothot A, Sente B, Scippo ML, Igout A, Vandenbroeck M, Dombrowicz D, Hennen G. Pituitary dependent expression of insulin like growth factor I and II in the immature hypophysectomy rat testis.  Mol Endocrinol. 1989;  3 1125-1131
  • 38 Palmero S, Bardi G, Bolla F, Fugassa E. Direct stimulatory effects of insulin-like growth factor-I (IGF-I) on nuclear RNA polymerase II activity and overall protein synthesis in immature rat Sertoli cells.  Ital J Biochem. 1998;  47 163 169
  • 39 Itoh N, Nanbu A, Tachiki  , Akagashi K, Niita T, Mikuma N, Tsukamoto T, Kumamoto Y. Restoration of testicular transferrin, insulin-like growth factor 1 (IGF-1), and spermatogenesis by exogenous administrated purified FSH and testosterone in medically hypophysectomized rats.  Arch Androl. 1994;  33 169-177
  • 40 Davare MA, Avdonin V, Hall DD, Peden EM, Burette A, Weinberg RJ, Horne MC, Hoshi T, Hell JW. A β2 adrenergic receptor signaling com-plex assembled with the Ca2+ channel Cav1.2.  Science. 2001;  293 98-101
  • 41 Brown AM, Birnbaumer L. Ionic channels and their regulation by G protein subunits.  Annu Rev Physiol. 1990;  52 197-213
  • 42 Wolski KM, Perrault C, Tran-Son-Tay R, Cameron DF. Strength measurement of the Sertoli-spermatid junctional complex.  J Androl. 2005;  26 354-359
  • 43 Bootman MD, Lipp P, Berridge MJ. The organization and functions of local Ca2+ signals.  J Cell Sci. 2001;  114 2213-2222
  • 44 Berridge MJ, Bootman MD, Lipp P. Calcium - a life and death signal.  Nature. 1998;  395 645-648
  • 45 De Koninck P, Schulman H. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations.  Science. 1998;  279 227-230
  • 46 Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI. Differential activation of transcription factors induced by Ca2+ response amplitude and duration.  Nature. 1997;  386 855-858
  • 47 Perez-Sanches VH, Wassermann GF. Amino acid transport in rat Sertoli cell-enriched testis: studies on the mechanism of action of follicle-stimulating hormone.  Braz J Med Biol Res. 1981;  14 11-17
  • 48 Leite L, Luchi R, Von Ledebur EICF, Loss ES, Wassermann GF. Testosterone induces immediate membrane depolarization and stimulates 45Ca2+ uptake in Sertoli cells from rats of differ nt maturation stages.  Med Sci Res. 1999;  27 25-28
  • 49 Rommerts FFG, Lyng FM, Ledebur E von, Quinlan L, Jones GR, Warchol JB, Stefanini M, Ravindranath N, Joffre M. Calcium confusion - is the variability in calcium response by Sertoli cells to specific hormones meaningful or simply redundant?.  J Endocrinol. 2000;  167 1-5
  • 50 Lin Y-F, Tseng M-J, Hsu H-L, Wu Y-W, Lee Y-H, Tsai Y-H. A novel FSH-induced Gαh/PLC-δ1 signaling pathway mediating rat Sertoli cell Ca2+-influx.  Mol Endocrinol. 2006;  20 2514-2527
  • 51 Quirk SM, Reichert LE. Regulation of the phosphoinositide pathway in cultured Sertoli cells from immature rats: effects of follicle stimulating hormone and fluoride.  Endocrinology. 1988;  123 230-237
  • 52 Loss ES, Jacobsen M, Costa Zsm, Jacobus Ap, Borelli F, Wassermann GF. Testosterone modulates K+ATP channels in Sertoli cell membrane by a PLC-PIP2 pathway.  Horm Metab Res. 2004;  36 519-525
  • 53 Wassermann GF, Loss ES. Testosterone action on the Sertoli cell membrane: a KIR6.x channel related effect.  Curr Pharm Des. 2004;  10 2649-2656
  • 54 Konoplya EF, Poppof EH. Identification of the classical androgen receptor in male rat liver and prostate cell plasma membrane.  Int J Biochem. 1992;  24 1979-1983
  • 55 Heilen CA, Chang C. The roles of androgen receptors and androgen-binding proteins in non-genomic androgen actions.  Mol Endocrinol. 2002;  16 2181-2187
  • 56 Cheng J, Watkins SC, Walker WH. Testosterone activates MAP kinase via Src kinase and the EGF receptor in Sertoli cells.  Endocrinology. 2007;  , Feb [Epub ahead of print] doi: 10.1210/em2006-1465
  • 57 Ledebur EICF von, Almeida JP, Loss ES, Wassermann GF. Rapid effect of testosterone on rat Sertoli cell membrane potential. Relationship with K+ATP channels.  Horm Metab Res. 2002;  34 550-555
  • 58 Grillo ML, Jacobus AP, Rodrigues DO, Scalco R, Amaral F, Loss ES, Wassermann GF. Testosterone rapidly stimulates insulin release from isolated pancreatic islets through a non-genomic dependent mechanism.  Horm Metab Res. 2005;  37 662-665
  • 59 Baukrowitz T, Fakler B. KATP channels gated by intracellular nucleotides and phospholipids.  Eur J Biochem. 2000;  267 5842-5848
  • 60 Berridge MJ, Bootman MD, Lipp P. Calcium - a life and death signal.  Nature. 1998;  395 645-648
  • 61 Janmey PA. Phosphoinositides and calcium as regulators of cellular actin assembly and disassembly.  Annu Rev Phys. 1994;  56 169-191
  • 62 Sambrano GR, Chandy G, Choi S, Decamp D, Hsueh R, Lin K-M. et al . Unravelling the signal-transduction network in B lymphocytes.  Nature. 2003;  420 708-710
  • 63 Walker WH. Nongenomic actions of androgens in Sertoli cells.  Curr Top Dev Biol. 2003;  56 25-53
  • 64 Biscardi JS, Maa MC, Tice DA, Cox ME, Leu TH, Parsons SJ. c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function.  J Biol Chem. 1999;  274 8335-8343
  • 65 Fix C, Jordan C, Cano P, Walker WH. Testosterone activates mitogen-activated protein kinase and the cAMP response element binding protein transcription factor in Sertoli cells.  Proc Nat Acad Sci USA. 2004;  101 10919-10924
  • 66 Scobey MJ, Bertera S, Somers JP, Watkins SC, Zeleznik AJ, Walker WH. Delivery of a cyclic adenosine 3′,5′-monophosphate response element-binding protein (CREB) Mutant to Seminiferous Tubules Results in Impaired Spermatogenesis.  Endocrinology. 2001;  142 948-954
  • 67 Simoni M, Gromoll J, Nieschlag E. The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology, and pathophysiology.  Endocr Rev. 1997;  18 739-773
  • 68 MacDonald CA, Millena AC, Reddy S, Finlay S, Vizcarra J, Khan SA, Davis JS. Follicle-stimulating hormone-induced aromatase in immature rat Sertoli cells requires an active phosphatidylinositol 3-kinase pathway and is inhibited via the mitogen-activated protein kinase signaling pathway.  Mol Endocrinol. 2006;  20 608-618

Correspondence

G. F. Wassermann

Departamento de Fisiologia

ICBS

UFRGS

Rua Sarmento Leite 500

Porto Alegre

Rio Grande do Sul

90050-120 CEP

Brazil

Phone: +55/51/3308 33 02

Fax: +55/51/3308 33 02

Email: gwass@ufrgs.br

    >