TumorDiagnostik & Therapie 2008; 29(5): 265-268
DOI: 10.1055/s-2008-1027877
Thieme Onkologie aktuell

© Georg Thieme Verlag KG Stuttgart · New York

Der Transforming Growth Factor-Beta (TGF-β)-Signalweg und seine Bedeutung beim malignen Melanom[*]

The Transforming Growth Factor-Beta (TGF-β) Signaling and its Role in MelanomaK. Krasagakis1
  • 1Hautklinik, Universitätskrankenhaus von Heraklion, Universität von Kreta, Griechenland
Further Information

Publication History

Publication Date:
23 October 2008 (online)

Zusammenfassung

Der Transforming Growth Factor-β (TGF-β) stellt einen potenten Wachstumsinhibitor bei normalen Melanozyten dar. Diese Funktion scheint im Verlauf der Tumorgenese zunehmend verloren zu gehen, da viele Melanomzellen durch TGF-β nur sehr schwach oder gar nicht gehemmt werden. Beim Melanom wird der antiproliferative Signalweg des TGF-β häufig aufgehoben, und die Produktion des TGF-β autokrin hochreguliert. Somit kommt es zu einer Reihe parakriner Effekte, wie des extrazellulären Matrixumbaus, der Neoangiogenese, und der Immunsuppression, die letztendlich zum lokalen Tumorwachstum und zur Metastasierung führen. Die Wechselwirkungen der TGF-β-signalübertragenden Smad Proteine mit anderen Signalsystemen, wie der mitogenaktivierten Proteinkinasen, des SKI/SnoN und des Proteinkinase-C-Systems, tragen möglicherweise zum Entweichen der Melanomzellen von der TGF-β-Wachstumskontrolle bei. Die Abklärung der molekularen Interaktionen des TGF-β-Signalweges wird möglicherweise zu der Entwicklung neurer Konzepte für die Therapie des malignen Melanoms beitragen.

The Transforming Growth Factor-Beta (TGF-β) Signaling and its Role in Melanoma

Transforming growth factor-β is a potent growth inhibitor for normal melanocytes. This function is lost in the course of tumorigenesis, since several melanoma cell lines are only slightly or not at all inhibited by TGF-β. In melanoma, the transduction of antiproliferative signals by TGF-β is often abolished, and the autocrine production of TGF-β increased. By this way, several TGF-β-driven paracrine effects, such as extracellular matrix remodeling, neoangiogenesis, and immunosuppression induce local tumor growth and metastasis. The interaction of Smads, the major TGF-β signaling proteins, with other signaling systems such as the mitogen-activated protein kinases, the SKI/SnoN proteins, and the protein kinase C family, possibly contributes to the escape of melanoma cells from TGF-β growth control. Therefore, the clarification of the molecular interactions of the TGF-β signaling pathway may further promote the development of new treatment concepts for melanoma.

1 Vortrag anlässlich des Jahressymposiums der Berliner Stiftung für Dermatologie am 31. 5. 2008.

Literatur

  • 1 Sporn M B, Roberts A B. Autocrine growth factors and cancer.  Nature. 1985;  313 745-747
  • 2 De Larco D E, Pigott D A, Lazarus J A. Ectopic peptides released by a melanoma cell line that modulate the transformed phenotype.  Proc Natl Acad Sci USA. 1985;  82 5015-5019
  • 3 Roberts A B, Anzano M A, Wakefield L M. et al . Type β transforming growth factor: A bifunctional regulator of cellular growth.  Proc Natl Acad Sci USA. 1985;  82 119-123
  • 4 Shipley G D, Pittelkow M R, Wille J J. et al . Reversible inhibition of normal human prokeratinocyte proliferation by type beta transforming growth factor-growth inhibitor in serum-free medium.  Cancer Res. 1986;  46 2068-2071
  • 5 Kehrl J H, Wakefield L M, Roberts A B. et al . Production of transforming growth factor β by human T lymphocytes and its potential role in the regulation of T cell growth.  J Exp Med. 1986;  163 1037-1050
  • 6 Kehrl J H, Taylor A S, Delsing G A. et al . Further studies of the role of TGF-β in human B cell function.  J Immunol. 1989;  143 1868-1874
  • 7 Houck K A, Michalopoulos G K, Strom S C. Introduction of Ha-ras oncogene into liver epithelial cells and parenchymal hepatocytes confers resistance to the growth inhibitory effects of TGF-β.  Oncogene. 1989;  4 19-25
  • 8 Game S M, Huelsen Jr A, Patel V. et al . Progressive abrogation of TGF-beta 1 and EGF growth control is associated with tumour progression in ras-transfected human keratinocytes.  Int J Cancer. 1992;  52 461-470
  • 9 Krasagakis K, Garbe C, Schrier P I, Orfanos C E. Paracrine and autocrine regulation of human melanocyte and melanoma cell growth by transforming growth factor beta in vitro.  Anticancer Res. 1994;  14 2565-2572
  • 10 Rodeck U, Bossler A, Graeven U. et al . Transforming growth factor β production and responsiveness in normal human melanocytes and melanoma cells.  Cancer Res. 1994;  54 575-581
  • 11 Krasagakis K, Krüger-Krasagakes S, Fimmel S. et al . Desensitization of melanoma cells to autocrine TGF-β isoforms.  J Cell Physiol. 1999;  178 179-187
  • 12 Krasagakis K, Thölke D, Farthmann B. et al . Elevated plasma levels of transforming growth factor (TGF)-β 1 and TGF-β 2 in patients with disseminated malignant melanoma.  Br J Cancer. 1998;  77 1492-1494
  • 13 Tas F, Duranyildiz D, Oguz H. et al . Circulating serum levels of angiogenic factors and vascular endothelial growth factor receptors 1 and 2 in melanoma patients.  Melanoma Res. 2006;  16 405-411
  • 14 Berking C, Takemoto R, Schaider H. et al . Transforming Growth Factor-β 1 increases survival of human melanoma through stroma remodelling.  Cancer Res. 2001;  61 8306-8316
  • 15 Valenti R, Huber V, Filipazzi P. et al . Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-β-mediated suppressive activity on T lymphocytes.  Cancer Res. 2006;  66 9290-9298
  • 16 Ahmadzadeh M, Rosenberg S A. TGF-β 1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells.  J Immunol. 2005;  174 5215-5223
  • 17 Kaminska B, Wesolowska A, Danilkiewicz M. TGF beta signalling and its role in tumour pathogenesis.  Acta Biochim Pol. 2005;  52 329-337
  • 18 Javelaud D, Delmas V, Moller M. et al . Stable overexpression of Smad7 in human melanoma cells inhibits their tumorigenicity in vitro and in vivo.  Oncogene. 2005;  24 7624-7629
  • 19 Mulder K M. Role of Ras and MAPKs in TGF-β signaling.  Cytokine Growth Factor Rev. 2000;  11 23-35
  • 20 Rodeck U, Nishiyama T, Mauviel A. Independent regulation of growth and SMAD-mediated transcription by transforming growth factor β in human melanoma cells.  Cancer Res. 1999;  59 547-550
  • 21 Reed J A, Lin Q, Chen D. et al . SKI pathways inducing progression of human melanoma.  Cancer Metastasis Rev. 2005;  24 265-272
  • 22 Mauviel A, Javelaud D, Le Scolan E. et al . C-SKI expression in human melanoma cells does not antagonize TGF-beta-dependent transcriptional responses.  J Invest Dermatol. 2007;  127 S50
  • 23 Stavroulaki M, Kardassis D, Chatzaki E. et al . Exposure of normal human melanocytes to a tumor promoting phorbol ester reverses growth suppression by transforming growth factor beta.  J Cell Physiol. 2008;  214 363-370
  • 24 Chuang C C, Tan S K, Tai L K. et al . Evidence for the involvement of protein kinase C in the inhibition of prolactin gene expression by transforming growth factor- β 2.  Mol Pharmacol. 1998;  53 1054-1061
  • 25 Yakymovych I, ten Dijke P, Heldin C H, Souchelnychkyi S. Regulation of Smad signaling by protein kinase C.  FASEB J. 2001;  15 553-555
  • 26 Schlingensiepen K H, Fischer-Blass B, Schmaus S, Ludwig S. Antisense therapeutics for tumor treatment: the TGF-beta2 inhibitor AP 12 009 in clinical development against malignant tumors.  Recent Results Cancer Res. 2008;  177 137-150
  • 27 Nemunaitis J, Dillman R O, Schwarzenberger P O. et al . Phase II study of belagenpumatucel-L, a transforming growth factor beta-2 antisense gene-modified allogeneic tumor cell vaccine in non–small-cell lung cancer.  J Clin Oncol. 2006;  24 4721-4730

1 Vortrag anlässlich des Jahressymposiums der Berliner Stiftung für Dermatologie am 31. 5. 2008.

Dr. med. Konstantin Krasagakis

Assistant Professor
Hautklinik
Universitätskrankenhaus von Heraklion

GR-71110 Heraklion
Griechenland

Email: krasagak@med.uoc.gr

    >