Horm Metab Res 2008; 40(6): 375-380
DOI: 10.1055/s-2008-1062701
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

White Adipose Tissue Production and Release of IL-6 and TNF-α Do Not Parallel Circulating and Cerebrospinal Fluid Concentrations in Pregnant Rats

S. Caja 1 , M. Puerta 1
  • 1Department of Animal Physiology II, Faculty of Biological Sciences, Complutense University, Madrid, Spain
Further Information

Publication History

received 10.07.2007

accepted 26.10.2007

Publication Date:
14 March 2008 (online)

Abstract

IL-6 and TNF-α are synthesized in white adipose tissue both by adipocytes and by the stroma-vascular fraction. They both are known to interfere with insulin signaling, reducing insulin sensitivity and lipid deposition. At a central level, IL-6 enhances sympathetic nervous system activity, thus enhancing lipolysis and reducing fat mass. During late pregnancy, white adipose tissue (WAT) mass increases and insulin sensitivity decreases. To assess the involvement of both adipokines in such processes, we analyzed the tissue content and release of both adipokines in parametrial and subcutaneous WAT depots and their circulating and cerebrospinal fluid concentrations in nonpregnant rats and in pregnant rats by days 8, 15, and 19 of pregnancy. The tissue content of both adipokines was enhanced 5-6 times by day 8 until the end of pregnancy in parametrial WAT, whereas the increase took place by day 15-19 in subcutaneous WAT. No increase in tissue release was detected, suggesting a local action. However, circulating IL-6 concentration was enhanced by day 8 until the end of pregnancy, suggesting sources other than WAT. IL-6 concentration in cerebrospinal fluid paralleled the increases in serum by days 8 and 15, suggesting a systemic origin. However, it returned to basal levels by day 19, suggesting a central control for IL-6 entrance. TNF-α was not detected in either serum or cerebrospinal fluid. These results led us to conclude that across pregnancy adipokines control WAT depots in a time- and depot-dependent manner. They do so directly, by local production, but the enhanced concentrations of both circulating and CSF IL-6 suggest an indirect action mediated by the nervous system.

References

  • 1 Ronti T, Lupattelli G, Mannarino E. The endocrine function of adipose tissue: an update.  Clin Endocrinol. 2006;  64 355-365
  • 2 Yu YH, Ginsberg HN. Adipocyte signaling and lipid homeostasis: sequelae of insulin-resistant adipose tissue.  Circ Res. 2005;  96 1042-1052
  • 3 Bastard JP, Maachi M, Lagathu C. et al . Recent advances in the relationship between obesity, inflammation, and insulin resistance.  Eur Cytokine Netw. 2006;  17 4-12
  • 4 Bastard JP, Jardel C, Bruckert E. et al . Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss.  J Clin Endocrinol Metab. 2000;  85 3338-3342
  • 5 Mohamed-Ali V, Goodrick S, Rawest A. et al . Subcutaneous adipose tissue releases interleukin-6 but not tumor necrosis factor-a, in vivo.  J Endocrinol Metab. 1997;  82 4196-4200
  • 6 Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans.  Endocrinology. 2004;  145 2273-2282
  • 7 Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adi-pose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid.  J Clin Endocrinol Metab. 1998;  83 847-850
  • 8 Ihle JN, Witthuhn BA, Quelle FW, Yamamoto K, Silvennoinen O. Signaling through the hematopoietic cytokine receptors.  Annu Rev Immunol. 1995;  13 369-398
  • 9 Mooney RA, Senn J, Cameron S. et al . Suppressors of cytokine signaling-1 and -6 associate with and inhibit the insulin receptor. A potential mechanism for cytokine-mediated insulin resistance.  J Biol Chem. 2001;  276 25889-25893
  • 10 Tsigos C, Papanicolaou DA, Kyrou I. et al . Dose-dependent effects of recombinant human interleukin-6 on glucose regulation.  J Clin Endocrinol Metab. 1997;  82 4167-4170
  • 11 Greenberg AS, Nordan RP, McIntosh J. et al . Interleukin 6 reduces lipoprotein lipase activity in adipose tissue of mice in vivo and in 3T3-L1 adipocytes: a possible role for interleukin 6 in cancer cachexia.  Cancer Res. 1992;  52 4113-4116
  • 12 Fasshauer M, Kralisch S, Klier M. et al . Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocytes.  Biochem Biophys Res Commun. 2003;  301 1045-1050
  • 13 Carey AL, Febbraio MA. Interleukin-6 and insulin sensitivity: friend or foe?.  Diabetologia. 2004;  47 1135-1142
  • 14 Kristiansen OP, Mandrup-Poulsen T. Interleukin-6 and diabetes: the good, the bad, or the indifferent?.  Diabetes. 2005;  54 ((Suppl 2)) 114-124
  • 15 Wallenius V, Wallenius K, Ahren B. et al . Interleukin-6-deficient mice develop mature-onset obesity.  Nat Med. 2002;  8 75-79
  • 16 Li G, Klein RL, Matheny M. et al . Induction of uncoupling protein 1 by central interleukin-6 gene delivery is dependent on sympathetic innervation of brown adipose tissue and underlies one mechanism of body weight reduction in rats.  Neuroscience. 2002;  115 879-889
  • 17 Jansson JO, Wallenius K, Wernstedt I. et al . On the site and mechanism of action of the anti-obesity effects of interleukin-6.  Growth Horm IGF Res. 2003;  13 ((Suppl A)) 28-32
  • 18 Wernstedt I, Edgley A, Berndtsson A. et al . Reduced stress- and cold-induced increase in energy expenditure in interleukin-6-deficient mice.  Am J Physiol Regu Integrat Comp Physiol. 2006;  291 551-557
  • 19 Schobitz B, Kloet ER de, Sutanto W, Holsboer F. Cellular localization of interleukin 6 mRNA and interleukin 6 receptor mRNA in rat brain.  Eur J Neurosci. 1993;  5 1426-1435
  • 20 Stenlof K, Wernstedt I, Fjallman T. et al . Interleukin-6 levels in the central nervous system are negatively correlated with fat mass in overweight/obese subjects.  J Clin Endocrinol Metab. 2003;  88 4379-4383
  • 21 Jellema A, Plat J, Mensink RP. Weight reduction, but not a moderate intake of fish oil, lowers concentrations of inflammatory markers and PAI-1 antigen in obese men during the fasting and postprandial state.  Eur J Clin Invest. 2004;  34 766-773
  • 22 Ofei F, Hurel S, Newkirk J, Sopwith M, Taylor R. Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM.  Diabetes. 1996;  45 881-885
  • 23 Peraldi P, Hotamisligil GS, Buurman WA, White MF, Spiegelman BM. Tumor necrosis factor (TNF)-alpha inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase.  J Biol Chem. 1996;  271 13018-13022
  • 24 Hector J, Schwarzloh B, Goehring J. et al . TNF-alpha alters visfatin and adiponectin levels in human fat.  Horm Metab Res. 2007;  39 250-255
  • 25 Ruan H, Hacohen N, Golub TR, Parijs L Van, Lodish HF. Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory.  Diabetes. 2002;  51 1319-1336
  • 26 Kempf K, Hector J, Strate T. et al . Immune-mediated activation of the endocannabinoid system in visceral adipose tissue in obesity.  Horm Metab Res. 2007;  39 596-600
  • 27 Rocha M, Bing C, Williams G, Puerta M. Pregnancy-induced hyperphagia is associated with increased gene expression of hypothalamic agouti-related peptide in rats.  Regul Pept. 2003;  114 159-165
  • 28 Caja S, Martínez I, Abelenda M, Puerta M. Resistin expression and plasma concentration peak at different times during pregnancy in rats.  J Endocrinol. 2005;  185 551-559
  • 29 Caja S, Torrente M, Martínez I, Abelenda M, Puerta M. Adiponectin values are unchanged during pregnancy in rats.  J Endocrinol Invest. 2005;  28 609-615
  • 30 Caja S, Puerta M. Control by reproduction-related hormones of resistin expression and plasma concentration.  Horm Metab Res. 2007; 
  • 31 Li J, Yu X, Pan W, Unger RH. Gene expression profile of rat adipose tissue at the onset of high-fat-diet obesity.  Am J Physiol Endocrinol Metab. 2002;  282 1334-1341
  • 32 Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue.  Br J Nutr. 2004;  92 347-355
  • 33 Caja S, Puerta M. Control by reproduction-related hormones of resistin expression and plasma concentration.  Horm Metab Res. 2007;  39 501-506
  • 34 Abelenda M, Puerta M. Inhibition of diet-induced thermogenesis during pregnancy in the rat.  Pflügers Arch Eur J Physiol. 1987;  409 314-317
  • 35 Lopez-Luna P, Maier I, Herrera E. Carcass and tissue fat content in the pregnant rat.  Biol Neonate. 1991;  60 29-38
  • 36 Ramos MP, Crespo-Solans MD, del Campo S, Cacho J, Herrera E. Fat accumulation in the rat during early pregnancy is modulated by enhanced insulin responsiveness.  Am J Physiol Endocrinol Metab. 2003;  285 318-328
  • 37 Kirwan JP, Hauguel-De Mouzon S, Lepercq J. et al . TNF-alpha is a predictor of insulin resistance in human pregnancy.  Diabetes. 2002;  51 2207-2213
  • 38 Arner P. Regional adipocity in man.  J Endocrinol. 1997;  155 191-192
  • 39 Benyo DF, Smarason A, Redman CW, Sims C, Conrad KP. Expression of inflammatory cytokines in placentas from women with preeclampsia.  J Clin Endocrinol Metab. 2001;  86 2505-2512
  • 40 Malek A, Sager R, Schneider H. Effect of hypoxia, oxidative stress and lipopolysaccharides on the release of prostaglandins and cytokines from human term placental explants.  Placenta. 2001;  22 ((Suppl A)) 45-50
  • 41 Lepercq J, Challier JC, Guerre-Millo M. et al . Prenatal leptin production: evidence that fetal adipose tissue produces leptin.  J Clin Endocrinol Metab. 2001;  86 2409-2413
  • 42 Hauguel-de Mouzon S, Guerre-Millo M. The placenta cytokine network and inflammatory signals.  Placenta. 2006;  27 794-798
  • 43 Leturque A, Ferré P, Burnol AF. et al . Glucose utilization rates and insulin sensitivity in vivo in tissues of virgin and pregnant rats.  Diabetes. 1986;  35 172-177
  • 44 Ladyman SR, Grattan DR. Region-specific reduction in leptin-induced phosphorylation of signal transducer and activator of transcription-3 (STAT3) in the rat hypothalamus is associated with leptin resistance during pregnancy.  Endocrinology. 2004;  145 3704-3711

Correspondence

M. Puerta

Department of Animal Physiology II

Faculty of Biological Sciences

Complutense University

28040 Madrid

Spain

Phone: +34/91/39 44 990

Fax: +34/91/39 44 935

Email: mpuerta@bio.ucm.es

    >