Exp Clin Endocrinol Diabetes 2008; 116(10): 582-591
DOI: 10.1055/s-2008-1065334
Article

© Georg Thieme Verlag KG Stuttgart · New York

Differential Analysis of Effect of High Glucose Level in the Development of Neuropathy in a Tissue Culture Model of Diabetes Mellitus: Role of Hyperosmolality

G. Öztürk 1 , E. Erdoğan 2 , M. Öztürk 3 , N. Cengiz 2 , A. Him 4
  • 1Yuzuncu Yil University, Medical School, Neuroscience Research Unit/Department of Physiology, Van, Turkey
  • 2Yuzuncu Yil University, Medical School, Neuroscience Research Unit/Department of Histology and Embryology, Van, Turkey
  • 3Yuzuncu Yil University, Medical School, Neuroscience Research Unit/Department of Endocrinology and metabolism, Van, Turkey
  • 4Yuzuncu Yil University, Neuroscience Research Unit/Department of Physiology, Van, Turkey
Further Information

Publication History

received 27.10.2007 first decision 03.12.2007

accepted 21.02.2008

Publication Date:
09 May 2008 (online)

Abstract

To analyse the contributions of metabolic toxicity of high glucose level and accompanying hyperosmolality to the development of diabetic neuropathy, mouse dorsal root ganglion (DRG) cultures were used. DRGs from postnatal day 7 mice were embedded in collagen gel and incubated in RPMI 1640 culture medium with increasing concentrations of glucose or equimolar amounts of mannitol which would create similar osmolalities. Outgrowth of axons from the peripheral nerve attached to DRG and migration of cells into the gel were quantified. The extent of cell death, apoptosis and mitosis among the migrating cells and apoptosis among DRG neurons following exposure to high glucose or mannitol were also evaluated. The growth of axons was almost equally affected by increasing concentrations of glucose or mannitol up to 395 mOsm/kg H2O. Number of migrating cells was close to control values with mannitol between 340–395 mOsm/kg H2O while high concentrations of glucose always decreased it. Exposure to high glucose or mannitol led to increased proportions of dead and apoptotic migrating cells and apoptotic DRG neurons. Mitotic activity was also negatively affected by high glucose or mannitol. While glucose proved significantly more detrimental to migrating cells than mannitol in the latter tests, the extent of apoptosis was similar among DRG neurons in both conditions. In conclusion, the contribution of hyperosmolality to the development of neuropathy in high glucose condition appears to be quite significant. The peripheral nerve cells and neurons, however, are differentially affected by hyperosmolality and metabolic toxicity of high glucose.

References

  • 1 Almhanna K, Wilkins PL, Bavis JR, Harwalkar S, Berti-Mattera LN. Hyperglycemia triggers abnormal signaling and proliferative responses in Schwann cells.  Neurochem Res. 2002;  27 1341-1347
  • 2 Bagnasco SM, Uchida S, Balaban RS, Kador PF, Burg MB. Induction of aldose reductase and sorbitol in renal inner medullary cells by elevated extracellular NaCl.  Proc Natl Acad Sci USA. 1987;  84 1718-1720
  • 3 Bhardwaj A, Harukuni I, Murphy SJ. et al . Hypertonic saline worsens infarct volume after transient focal ischemia in rats.  Stroke. 2000;  31 1694-1701
  • 4 Bisby MA. Axonal transport of labeled protein and regeneration rate in nerves of streptozocin-diabetic rats.  Exp Neurol. 1980;  69 74-84
  • 5 Braaten JT. Hyperosmolar nonketotic diabetic coma: diagnosis and management.  Geriatrics. 1987;  42 83-88,92
  • 6 Burg MB. Role of aldose reductase and sorbitol in maintaining the medullary intracellular milieu.  Kidney Int. 1988;  33 635-641
  • 7 Busik JV, Hootman SR, Greenidge CA, Henry DN. Glucose-specific regulation of aldose reductase in capan-1 human pancreatic duct cells in vitro.  J Clin Invest. 1997;  100 1685-1692
  • 8 Chakrabarti S, Sima AA, Nakajima T, Yagihashi S, Greene DA. Aldose reductase in the BB rat: isolation, immunological identification and localization in the retina and peripheral nerve.  Diabetologia. 1987;  30 244-251
  • 9 Chung SS, Ho EC, Lam KS, Chung SK. Contribution of polyol pathway to diabetes-induced oxidative stress.  J Am Soc Nephrol. 2003;  14 S233-S236
  • 10 Copp J, Wiley S, Ward MW, Geer P Van Der. Hypertonic shock inhibits growth factor receptor signaling, induces caspase 3 activation, and causes reversible fragmentation of the mitochondrial network.  Am J Physiol Cell Physiol. 2004; 
  • 11 Ekstrom AR, Kanje M, Skottner A. Nerve regeneration and serum levels of insulin-like growth factor-I in rats with streptozotocin-induced insulin deficiency.  Brain Res. 1989;  496 141-147
  • 12 Faradji V, Sotelo J. Low serum levels of nerve growth factor in diabetic neuropathy.  Acta Neurol Scand. 1990;  81 402-406
  • 13 Flyvbjerg A, Orskov H. Diabetic angiopathy: new experimental and clinical aspects.  Horm Metab Res. 2005;  37 (Suppl 1) 1-3
  • 14 Fu SY, Gordon T. The cellular and molecular basis of peripheral nerve regeneration.  Mol Neurobiol. 1997;  14 67-116
  • 15 Fulop M, Rosenblatt A, Kreitzer SM, Gerstenhaber B. Hyperosmolar nature of diabetic coma.  Diabetes. 1975;  24 594-599
  • 16 Hellweg R, Hartung HD. Endogenous levels of nerve growth factor (NGF) are altered in experimental diabetes mellitus: a possible role for NGF in the pathogenesis of diabetic neuropathy.  J Neurosci Res. 1990;  26 258-267
  • 17 Humpert PM, Papadopoulos G, Schaefer K. et al . sRAGE and esRAGE are not associated with peripheral or autonomic neuropathy in type 2 diabetes.  Horm Metab Res. 2007;  39 899-902
  • 18 Jakobsen J, Brimijoin S, Skau K, Sidenius P, Wells D. Retrograde axonal transport of transmitter enzymes, fucose-labeled protein, and nerve growth factor in streptozotocin-diabetic rats.  Diabetes. 1981;  30 797-803
  • 19 Kasalova Z, Prazny M, Skrha J. Relationship between peripheral diabetic neuropathy and microvascular reactivity in patients with type 1 and type 2 diabetes mellitus – neuropathy and microcirculation in diabetes.  Exp Clin Endocrinol Diabetes. 2006;  114 52-57
  • 20 Kennedy JM, Zochodne DW. The regenerative deficit of peripheral nerves in experimental diabetes: its extent, timing and possible mechanisms.  Brain. 2000;  123 ((Pt 10)) 2118-2129
  • 21 Kim B, Feldman EL. Insulin-like growth factor I prevents mannitol-induced degradation of focal adhesion kinase and Akt.  J Biol Chem. 2002;  277 27393-27400
  • 22 Ko BC, Ruepp B, Bohren KM, Gabbay KH, Chung SS. Identification and characterization of multiple osmotic response sequences in the human aldose reductase gene.  J Biol Chem. 1997;  272 16431-16437
  • 23 Maekawa K, Tanimoto T, Okada S, Suzuki T, Yabe-Nishimura C. Expression of aldose reductase and sorbitol dehydrogenase genes in Schwann cells isolated from rat: effects of high glucose and osmotic stress.  Brain Res Mol Brain Res. 2001;  87 251-256
  • 24 Matsuka Y, Spigelman I. Hyperosmolar solutions selectively block action potentials in rat myelinated sensory fibers: implications for diabetic neuropathy.  J Neurophysiol. 2004;  91 48-56
  • 25 Matthews CC, Feldman EL. Insulin-like growth factor I rescues SH-SY5Y human neuroblastoma cells from hyperosmotic induced programmed cell death.  J Cell Physiol. 1996;  166 323-331
  • 26 Mizisin AP, Li L, Calcutt NA. Sorbitol accumulation and transmembrane efflux in osmotically stressed JS1 schwannoma cells.  Neurosci Lett. 1997;  229 53-56
  • 27 Mizisin AP, Li L, Perello M, Freshwater JD, Kalichman MW, Roux L, Calcutt NA. Polyol pathway and osmoregulation in JS1 Schwann cells grown in hyperglycemic and hyperosmotic conditions.  Am J Physiol. 1996;  270 F90-97
  • 28 Mohiuddin L, Tomlinson DR. Impaired molecular regenerative responses in sensory neurones of diabetic rats: gene expression changes in dorsal root ganglia after sciatic nerve crush.  Diabetes. 1997;  46 2057-2062
  • 29 Nukada H, Dyck PJ, Low PA, Lais AC, Sparks MF. Axonal caliber and neurofilaments are proportionately decreased in galactose neuropathy.  J Neuropathol Exp Neurol. 1986;  45 140-150
  • 30 Öztürk G, Sž ekerog˘ lu MR, Erdog˘an E, Öztürk M. The effect of non-enzymatic glycation of extracellular matrix proteins on axonal regeneration in vitro.  Acta Neuropathol. 2006;  112 627-632
  • 31 Öztürk G, Erdog˘an E. Multidimensional long-term time-lapse microscopy of in vitro peripheral nerve regeneration.  Microsc Res Tech. 2004;  64 228-242
  • 32 Raghavendra S, Ashalatha R, Thomas SV, Kesavadas C. Focal neuronal loss, reversible subcortical focal T2 hypointensity in seizures with a nonketotic hyperglycemic hyperosmolar state.  Neuroradiology. 2007;  49 299-305
  • 33 Reinehr R, Haussinger D. Hyperosmotic activation of the CD95 system.  Methods in enzymology. 2007;  428 145-160
  • 34 Ruepp B, Bohren KM, Gabbay KH. Characterization of the osmotic response element of the human aldose reductase gene promoter.  Proc Natl Acad Sci U S A. 1996;  93 8624-8629
  • 35 Russell JW, Sullivan KA, Windebank AJ, Herrmann DN, Feldman EL. Neurons undergo apoptosis in animal and cell culture models of diabetes.  Neurobiol Dis. 1999;  6 347-363
  • 36 Scott JN, Clark AW, Zochodne DW. Neurofilament and tubulin gene expression in progressive experimental diabetes: failure of synthesis and export by sensory neurons.  Brain. 1999;  122 ((Pt 11)) 2109-2118
  • 37 Sima AA, Sugimoto K. Experimental diabetic neuropathy: an update.  Diabetologia. 1999;  42 773-788
  • 38 Sugimura K, Windebank AJ, Natarajan V. et al . Interstitial hyperosmolarity may cause axis cylinder shrinkage in streptozotocin diabetic nerve.  J Neuropathol Exp Neurol. 1980;  39 710-721
  • 39 Sugimoto K, Murakawa Y, Sima AA. Diabetic neuropathy – a continuing enigma.  Diabetes Metab Res Rev. 2000;  16 408-433
  • 40 Tilton RG, Chang K, Nyengaard JR, Enden M Van den, Ido Y, Williamson JR. Inhibition of sorbitol dehydrogenase. Effects on vascular and neural dysfunction in streptozocin-induced diabetic rats.  Diabetes. 1995;  44 234-242
  • 41 Tonge D, Edstrom A, Ekstrom P. Use of explant cultures of peripheral nerves of adult vertebrates to study axonal regeneration in vitro.  Prog Neurobiol. 1998;  54 459-480
  • 42 Unger JW, Klitzsch T, Pera S, Reiter R. Nerve growth factor (NGF) and diabetic neuropathy in the rat: morphological investigations of the sural nerve, dorsal root ganglion, and spinal cord.  Exp Neurol. 1998;  153 23-34
  • 43 Williamson JR, Chang K, Frangos M, Hasan KS, Ido Y, Kawamura T, Nyengaard JR, Enden M van den, Kilo C, Tilton RG. Hyperglycemic pseudohypoxia and diabetic complications.  Diabetes. 1993;  42 801-813
  • 44 Zhuang HX, Wuarin L, Fei ZJ, Ishii DN. Insulin-like growth factor (IGF) gene expression is reduced in neural tissues and liver from rats with non-insulin-dependent diabetes mellitus, and IGF treatment ameliorates diabetic neuropathy.  J Pharmacol Exp Ther. 1997;  283 366-374
  • 45 Zochodne DW, Verge VM, Cheng C, Sun H, Johnston J. Does diabetes target ganglion neurones? Progressive sensory neurone involvement in long-term experimental diabetes.  Brain. 2001;  124 2319-2334

Correspondence

Dr. G. Öztürk

Yyu Tip Fakultesi

Arastirma Hastanesi

Fizyoloji Abd

Van

65200 Turkey

Phone: +90/432/214 88 68

Fax: +90/432/214 88 68

Email: drgurkan@yyu.edu.tr

    >