Horm Metab Res 2008; 40(5): 311-314
DOI: 10.1055/s-2008-1073141
Original

© Georg Thieme Verlag KG Stuttgart · New York

High Dose 17 β-Estradiol and the α-Estrogen Agonist PPT Trigger Apoptosis in Human Adrenal Carcinoma Cells but the β-Estrogen Agonist DPN Does Not

L. M. Prieto 1 , 2 , J. W. Brown 1 , 2 , C. Perez-Stable 2 , 3 , L. M. Fishman 1 , 2
  • 1Adrenal Research Laboratory, V. A. Medical Center, Miami, FL, USA
  • 2Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
  • 3Geriatric Research, Education and Clinical Center, V. A. Medical Center, Miami, FL, USA
Further Information

Publication History

received 08.10.2007

accepted 12.10.2007

Publication Date:
19 May 2008 (online)

Abstract

Previous studies have shown that high dose 17β-estradiol (10-5 M) has a G2/M blocking effect in SW-13 human adrenal carcinoma cultures and strongly enhances apoptosis. To examine the differential effects of estrogen α and β-receptors in this system, we incubated SW-13 cells with specific α- and β-estrogen receptor agonists, PPT [4,4′,4′′-(propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol] and DPN [2,3-bis (4-hydroxyphenyl) propionitrile], respectively (each at 10-5 M). Flow cytometry was used to analyze the percentages of cells in various phases of the cell cycle [sub-G1 (apoptosis), G1, S, and G2/M] in each experimental condition. Exposure to 17 β-estradiol for 48 hours increased apoptosis more than 5-fold (from 3.6±0.5 to 20±2.2% of cells; p<0.01). The α-estrogen agonist PPT had a similar effect, increasing apoptosis to 22±1.7% (p<0.01), but the β-agonist DPN caused no change (3.6±0.5 vs. 3.9±0.8%). While estrogen and the α-estrogen agonist decrease apoptosis in this system, both of these compounds decreased the percentage of cells in G1 (from 59±1.4% for control to 34±2.3% for estrogen and 40±2.0% for PPT; p<0.01 for both agents relative to control); the β-agonist again had no effect. Estrogen was also found to block the cell cycle in G2/M, increasing it from 15±0.4 to 21±1.0% of cells (p<0.01), but neither the α- nor β-estrogen agonists had any effect at this point in the cell cycle, indicating that the influence of estrogen was not likely to be either α- or β-receptor mediated. There was no apparent effect of any of these agents on DNA synthesis, as indicated by unchanged percentages of cells in S phase. These studies suggest that induction of apoptosis by estrogen in SW-13 human adrenal cortical carcinoma cultures is mediated by the α-receptor, but the G2/M blocking effect of estrogen is not likely to be related to either α or β mechanisms.

References

  • 1 Reincke M. Mutations in adrenocortical tumors.  Horm Metab Res. 1998;  30 447-455
  • 2 Bertherat J, Gimenez-Roqueplo AP. New insights in the genetics of adrenocortical tumors, pheochromocytomas and paragangliomas.  Horm Metab Res. 2005;  37 384-390
  • 3 Sandrini F, Villain DP, Tucci S, Moreira AC, Castro M de, Elias LL. Inheritance of R337H p53 gene mutation in children with sporadic adrenocortical tumor.  Horm Metab Res. 2005;  37 231-235
  • 4 Ueberberg B, Tourne H, Redman A, Walz MK, Schmid KW, Mann KW, Mann K, Petersenn S. Differential expression of the human somatostatin receptor subtypes sst1 to sst5 in various adrenal tumors and normal adrenal gland.  Horm Metab Res. 2005;  37 722-728
  • 5 Almeida MQ, Latronico AC. The molecular pathogenesis of childhood adrenocortical tumors. The molecular pathogenesis of childhood adrenocortical tumors.  Horm Metab Res. 2007;  39 461-466
  • 6 Kanczkowski W, Morawietz H, Ziegler CG, Funk RH, Schmitz G, Zacharowski K, Mohn CE, Ehrhart-Bornstein M, Bornstein SR. Pam3CSK4 and LTA-TLRs ligands associated with micodomains induce IL8 production in human adrenocortical cancer cells.  Horm Metab Res. 2007;  39 457-460
  • 7 Stratakis CA. Adrenocortical tumors, primary pigmented adrenocortical disease (PPNAD/Carney complex, and other bilateral hyperplasias: the NIH studies.  Horm Metab Res. 2007;  39 467-473
  • 8 La Rocca RV, Stein CA, Danesi R, Jamis-Dow CA, Weiss GH, Myers CE. Suramin in adrenal cancer Modulation of steroid hormone production, cytotoxicity in vitro, and clinical antitumor effect.  J Clin Endocrinol Metab. 1990;  71 497-504
  • 9 Libe R, Fratticci A, Bertherat J. Adrenocortical cancer: pathophysio-logy and clinical management.  Endocrine-Related Cancer. 2007;  14 13-28
  • 10 Schteingart DE, Doherty GM, Gauger PG, Giordano TJ, Hammer GD, Korobkin M, Worden FP. Management of patients with adrenal cancer: recommendations of an international consensus conference.  Endocrine-Related Cancer. 2005;  12 667-680
  • 11 Brown JW, Prieto LM, Perez-Stable C, Montoya M, Cappell S, Fishman LM. Estrogen and progesterone lower cyclin B1 and D1 expression, block cell cycle in G2/M, and trigger apoptosis in human adrenal carcinoma cultures.  Horm Met Res. 2008;  40 306-310
  • 12 Lobanova YS, Scherbakov AM, Shatskaya VA, Krasil’nkov MA. Mechanism of estrogen-induced apoptosis in breast cancer cells: Role of the NF-kappaB signaling pathway.  Biochemistry (Mosc). 2007;  72 320-327
  • 13 Cabeza M, Bratoeff E, Heuze I, Guzman A, Gomez G, Berrios H, Rosales AM. Antiandrogenic and apoptotic effects of RU-486 on animal prostate.  J Steroid Biochem Mol Biol. 2007;  104 321-325
  • 14 Seeger H, Huober J, Wallwiener D, Mueck AO. Inhibition of human breast cancer cell proliferation with estradiol metabolites is as effective as with tamoxifen.  Horm Metab Res. 2004;  36 277-280
  • 15 Seeger H, Rakov V, Mueck AO. Dose-dependent changes of the ratio of apoptosis to proliferation by norethisterone and medroxyprogesterone acetate in human breast epithelial cells.  Horm Metab Res. 2005;  37 468-473
  • 16 Bland LB, Garzotto M, Loughery TG De, Ryan CW, Schuff KG, Wersinger EM, Lemmon D, Beer TM. Phase II study of transdermal estradiol in androgen-independent prostate cancer.  Cancer. 2005;  103 717-723
  • 17 Tammela T. Endocrine treatment of prostate cancer.  J Steroid Biochem Mol Biol. 2004;  92 287-295
  • 18 Blagosklonny MV, Neckers LM. Cytostatic and cytotoxic activity of sex steroids against human leukemia cell lines.  Cancer Lett. 1994;  76 81-86
  • 19 Brown JW, Kesler CT, Neary JT, Fishman LM. Effects of androgens and estrogens and catechol and methoxycatechol-estrogen derivatives on mitogen-activated protein kinase (ERK1,2) activity in SW-13 human adrenal carcinoma cells.  Horm Metab Res. 2001;  33 127-130
  • 20 Montoya M, Brown JW, Fishman LM. Comparative effects of chemotherapeutic agents on the growth and survival of human adrenal carcinoma cells in culture.  Horm Metab Res. 2008;  40 302-305
  • 21 Leibovitz A, MacCombs 3rd WW, Johnston D, MacCoy CE, Stinson JC. New human cancer cell culture lines. I. SW-13, small-cell carcinoma of the adrenal cortex.  J Natl Cancer Inst. 1973;  51 691-697
  • 22 Brown JW, Kesler CT, Neary JT, Fishman LM. Effects of marine sponge extracts on mitogen-activated protein kinase (MAPK/ERK1,2) activity in SW-13 human adrenal carcinoma cells.  Toxicon. 2001;  39 1835-1839
  • 23 Krishan A. Rapid DNA content analysis by the propidium iodide-hypotonic citrate method.  Methods Cell Biol. 1990;  33 121-125
  • 24 Ahola TM, Alkio N, Manninen T, Ylikomi T. Progestin and G protein-coupled receptor 30 inhibit mitogen-activated protein kinase activity in MCF-7 breast cancer cells.  Endocrinology. 2002;  143 4620-4626
  • 25 Aizu-Yokota E, Ichinoseki K, Sato Y. Microtubule disruption induced by estradiol in estrogen receptor-positive and -negative human breast cancer cell lines.  Carcinogenesis. 1994;  15(9) 1875-1879
  • 26 Montanaro D, Maggiolini M, Recchia AG, Sirianni R, Aquila S, Barzon L, Fallo F, Ando S, Pezzi V. Antiestrogens upregulate estrogen receptor beta expression and inhibit adrenocortical H295R cell proliferation.  J Mol Endocrinol. 2005;  35 245-256

Correspondence

Dr. J.W. Brown

Adrenal Research Laboratory (151)

V. A. Medical Center

1201 N. W. 16th St.

Miami

33125 FL

USA

Phone: +1/305/324 4455 (Extn 4487)

Fax: +1/305/575 3126

Email: j.brown@miami.edu

    >