Pharmacopsychiatry 2008; 41: S44-S50
DOI: 10.1055/s-2008-1080902
Review

© Georg Thieme Verlag KG Stuttgart · New York

Genetic Control of Rodent Midbrain Dopaminergic Neuron Development in the Light of Human Disease

R. Klafke 1 , W. Wurst 1 , 2 , N. Prakash 1
  • 1Helmholtz Center Munich, German Research Center for Environmental Health (GmbH) and Technical University Munich, Institute of Developmental Genetics, Munich/ Neuherberg, Germany
  • 2Max-Planck-Institute of Psychiatry, Munich, Germany
Further Information

Publication History

Publication Date:
28 August 2008 (online)

Abstract

Dopamine-producing neurons in the mammalian midbrain have received considerable attention in recent years because of their involvement in diverse neurological and psychiatric human disorders such as Parkinson's Disease (PD), schizophrenia and addiction. Although the underlying pathogenic mechanisms of these disorders are far from being understood, it is meanwhile accepted that a combination of genetic predisposition and environmental factors lead to the disease state. More recent evidence also suggests that both neurological and psychiatric disorders result from early disturbances affecting the normal development of the mesencephalic dopaminergic (mesDA) neurons. Understanding the cues directing the generation of the different mesDA cell groups, the establishment of their proper connections within the brain and their maintenance in the adult are therefore also of great clinical interest. Rodents, and in particular the mouse, have served as the classical “surrogate” organism for these studies based on their phylogenetic relationship to humans, their relatively well characterized mesDA system on both the anatomical and physiological levels, and especially on the propensity of the mouse to genetic manipulation enabling the dissection of genetic pathways underlying the proper generation and maintenance of the mesDA system in this species. In the present review, we will summarize recent findings in the overall context of murine mesDA neuron development.

References

  • 1 Andersson E, Jensen JB, Parmar M, Guillemot F, Bjorklund A. Development of the mesencephalic dopaminergic neuron system is compromised in the absence of neurogenin 2.  Development. 2006;  133 507-516
  • 2 Andersson E, Tryggvason U, Deng Q. et al . Identification of intrinsic determinants of midbrain dopamine neurons.  Cell. 2006;  124 393-405
  • 3 Bender W, Albus M, Moller HJ, Tretter F. Towards systemic theories in biological psychiatry.  Pharmacopsychiatry. 2006;  39 ((Suppl 1)) S4-S9
  • 4 Bjorklund A, Dunnett SB. Dopamine neuron systems in the brain: an update.  Trends Neurosci. 2007;  30 194-202
  • 5 Björklund A, Lindvall O. Dopamine-containing systems in the CNS. Amsterdam: Elsevier 1984: 55-121
  • 6 Blaess S, Corrales JD, Joyner AL. Sonic hedgehog regulates Gli activator and repressor functions with spatial and temporal precision in the mid/hindbrain region.  Development. 2006;  133 1799-1809
  • 7 Blak AA, Naserke T, Weisenhorn DM. et al . Expression of Fgf receptors 1, 2, and 3 in the developing mid- and hindbrain of the mouse.  Dev Dyn. 2005;  233 1023-1030
  • 8 Blak AA, Naserke T, Saarimaki-Vire J. et al . Fgfr2 and Fgfr3 are not required for patterning and maintenance of the midbrain and anterior hindbrain.  Dev Biol. 2007;  303 231-243
  • 9 Brodski C, Weisenhorn DM, Signore M. et al . Location and size of dopaminergic and serotonergic cell populations are controlled by the position of the midbrain-hindbrain organizer.  J Neurosci. 2003;  23 4199-4207
  • 10 Castillo SO, Baffi JS, Palkovits M. et al . Dopamine biosynthesis is selectively abolished in substantia nigra/ventral tegmental area but not in hypothalamic neurons in mice with targeted disruption of the Nurr1 gene.  Mol Cell Neurosci. 1998;  11 36-46
  • 11 Chi CL, Martinez S, Wurst W, Martin GR. The isthmic organizer signal FGF8 is required for cell survival in the prospective midbrain and cerebellum.  Development. 2003;  130 2633-2644
  • 12 Dahlstrom A, Fuxe K. Localization of monoamines in the lower brain stem.  Experientia. 1964;  20 398-399
  • 13 Dailly E, Chenu F, Renard CE, Bourin M. Dopamine, depression and antidepressants.  Fundam Clin Pharmacol. 2004;  18 601-607
  • 14 Ferrari GV D, Moon RT. The ups and downs of Wnt signaling in prevalent neurological disorders.  Oncogene. 2006;  25 7545-7553
  • 15 Farrer MJ. Genetics of Parkinson disease: paradigm shifts and future prospects.  Nat Rev Genet. 2006;  7 306-318
  • 16 Ferri ALM, Lin W, Mavromatakis YE. et al . Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a dosage-dependent manner.  Development. 2007;  134 2761-2769
  • 17 Filippi A, Duerr K, Ryu S. et al . Expression and function of nr4a2, lmx1b, and pitx3 in zebrafish dopaminergic and noradrenergic neuronal development.  BMC Dev Biol. 2007;  7 135
  • 18 Ftouh S, Akbar MT, Hirsch SR, Belleroche JS de. Down-regulation of Dickkopf 3, a regulator of the Wnt signalling pathway, in elderly schizophrenic subjects.  J Neurochem. 2005;  94 520-530
  • 19 Fuchs J, Mueller JC, Lichtner P. et al . The transcription factor PITX3 is associated with sporadic Parkinson's disease.  Neurobiol Aging. 2007;  , in press
  • 20 Gainetdinov RR, Mohn AR, Caron MG. Genetic animal models: focus on schizophrenia.  Trends Neurosci. 2001;  24 527-533
  • 21 Hashimoto R, Suzuki T, Iwata N. et al . Association study of the frizzled-3 (FZD3) gene with schizophrenia and mood disorders.  J Neural Transm. 2005;  V112 303-307
  • 22 Hökfelt T, Matensson A, Björklund S, Kleinau S, Goldstein M. Distributional maps of tyrosine hydroxylase-immunoreactive neurons in the rat brain. Amsterdam: Elsevier 1984: 227-379
  • 23 Hwang DY, Ardayfio P, Kang UJ, Semina EV, Kim KS. Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphakia mice.  Brain Res Mol Brain Res. 2003;  114 123-131
  • 24 Hynes M, Stone DM, Dowd M. et al . Control of cell pattern in the neural tube by the zinc finger transcription factor and oncogene Gli-1.  Neuron. 1997;  19 15-26
  • 25 Hynes M, Porter JA, Chiang C. et al . Induction of midbrain dopaminergic neurons by Sonic Hedgehog.  Neuron. 1995;  15 35-44
  • 26 Iwawaki T, Kohno K, Kobayashi K. Identification of a potential Nurr1 response element that activates the tyrosine hydroxylase gene promoter in cultured cells.  Biochem Biophys Res Commun. 2000;  274 590-595
  • 27 Jacobs FMJ, Smits SM, Noorlander CW. et al . Retinoic acid counteracts developmental defects in the substantia nigra caused by Pitx3 deficiency.  Development. 2007;  134 2673-2684
  • 28 Jessell TM. Neuronal specification in the spinal cord: inductive signals and transcriptional codes.  Nat Rev Genet. 2000;  1 20-29
  • 29 Kele J, Simplicio N, Ferri ALM. et al . Neurogenin 2 is required for the development of ventral midbrain dopaminergic neurons.  Development. 2006;  133 495-505
  • 30 Kim J, Inoue K, Ishii J. et al . A microRNA feedback circuit in midbrain dopamine neurons.  Science. 2007;  317 1220-1224
  • 31 Kim KS, Kim CH, Hwang DY. et al . Orphan nuclear receptor Nurr1 directly transactivates the promoter activity of the tyrosine hydroxylase gene in a cell-specific manner.  J Neurochem. 2003;  85 622-634
  • 32 Kittappa R, Chang WW, Awatramani RB, MacKay RDG. The foxa2 gene controls the birth and spontaneous degeneration of dopamine neurons in old age.  PLoS Biology. 2007;  5 e325
  • 33 Klockgether T. Parkinson's disease: clinical aspects.  Cell Tissue Res. 2004;  318 115-120
  • 34 Lammel S, Hetzel A, Häckel O. et al . Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system.  Neuron. 2008;  57 760-773
  • 35 Le WD, Xu P, Jankovic J. et al . Mutations in NR4A2 associated with familial Parkinson disease.  Nat Genet. 2003;  33 85-89
  • 36 Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders.  Nature. 2006;  441 1094-1096
  • 37 Lovestone S, Killick R, Forti M Di, Murray R. Schizophrenia as a GSK-3 dysregulation disorder.  Trends Neurosci. 2007;  30 142-149
  • 38 Maden M. Retinoic acid in the development, regeneration and maintenance of the nervous system.  Nat Rev Neurosci. 2007;  8 755-765
  • 39 Maldonado R. The neurobiology of addiction.  J Neural Transm Suppl. 2003;  1-14
  • 40 Maxwell SL, Ho HY, Kuehner E, Zhao S, Li M. Pitx3 regulates tyrosine hydroxylase expression in the substantia nigra and identifies a subgroup of mesencephalic dopaminergic progenitor neurons during mouse development.  Dev Biol. 2005;  282 467-479
  • 41 Meyer-Lindenberg A, Weinberger DR. Intermediate phenotypes and genetic mechanisms of psychiatric disorders.  Nat Rev Neurosci. 2006;  7 818-827
  • 42 Miyaoka T, Seno H, Ishino H. Increased expression of Wnt-1 in schizophrenic brains.  Schizophr Res. 1999;  38 1-6
  • 43 Nieoullon A. Dopamine and the regulation of cognition and attention.  Prog Neurobiol. 2002;  67 53-83
  • 44 Nunes I, Tovmasian LT, Silva RM, Burke RE, Goff SP. Pitx3 is required for development of substantia nigra dopaminergic neurons.  Proc Natl Acad Sci USA. 2003;  100 4245-4250
  • 45 Ono Y, Nakatani T, Sakamoto Y. et al . Differences in neurogenic potential in floor plate cells along an anteroposterior location: midbrain dopaminergic neurons originate from mesencephalic floor plate cells.  Development. 2007;  134 3213-3225
  • 46 Perlmann T, Wallen-Mackenzie A. Nurr1, an orphan nuclear receptor with essential functions in developing dopamine cells.  Cell Tissue Res. 2004;  318 45-52
  • 47 Placzek M, Briscoe J. The floor plate: multiple cells, multiple signals.  Nat Rev Neurosci. 2005;  6 230-240
  • 48 Prakash N, Brodski C, Naserke T. et al . A Wnt1-regulated genetic network controls the identity and fate of midbrain-dopaminergic progenitors in vivo.  Development. 2006;  133 89-98
  • 49 Prakash N, Wurst W. Specification of midbrain territory.  Cell Tissue Res. 2004;  318 5-14
  • 50 Reif A, Melchers M, Strobel A. et al . FZD3 is not a risk gene for schizophrenia: a case-control study in a Caucasian sample.  J Neural Transm Suppl. 2007;  297-301
  • 51 Ross CA, Margolis RL, Reading SAJ, Pletnikov M, Coyle JT. Neurobiology of schizophrenia.  Neuron. 2006;  52 139-153
  • 52 Saarimaki-Vire J, Peltopuro P, Lahti L. et al . Fibroblast growth factor receptors cooperate to regulate neural progenitor properties in the developing midbrain and hindbrain.  J Neurosci. 2007;  27 8581-8592
  • 53 Sakurada K, Ohshima-Sakurada M, Palmer TD, Gage FH. Nurr1, an orphan nuclear receptor, is a transcriptional activator of endogenous tyrosine hydroxylase in neural progenitor cells derived from the adult brain.  Development. 1999;  126 4017-4026
  • 54 Saucedo-Cardenas O, Quintana-Hau JD, Le WD. et al . Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons.  Proc Natl Acad Sci U S A. 1998;  95 4013-4018
  • 55 Smidt MP, Burbach JPH. How to make a mesodiencephalic dopaminergic neuron.  Nat Rev Neurosci. 2007;  8 21-32
  • 56 Smidt MP, Smits SM, Bouwmeester H. et al . Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeo-domain gene Pitx3.  Development. 2004;  131 1145-1155
  • 57 Smidt MP, Schaick HS van, Lanctot C. et al . A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons.  Proc Natl Acad Sci USA. 1997;  94 13305-13310
  • 58 Tretter F, Scherer J. Schizophrenia, neurobiology and the methodology of systemic modeling.  Pharmacopsychiatry. 2006;  39 ((Suppl 1)) S26-S35
  • 59 Heuvel DM Van den, Pasterkamp RJ. Getting connected in the dopamine system.  Prog Neurobiol. 2008;  , in press
  • 60 Munckhof P van den, Luk KC, Ste-Marie L. et al . Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons.  Development. 2003;  130 2535-2542
  • 61 Vernier P, Moret F, Callier S. et al . The degeneration of dopamine neurons in Parkinson's disease: insights from embryology and evolution of the mesostriatocortical system.  Ann NY Acad Sci. 2004;  1035 231-249
  • 62 Bohlen und Halbach O von, Schober A, Krieglstein K. Genes, proteins, and neurotoxins involved in Parkinson's Disease.  Prog Neurobiol. 2004;  73 151-177
  • 63 Wallen A, Zetterstrom RH, Solomin L. et al . Fate of mesencephalic AHD2-expressing dopamine progenitor cells in Nurr1 mutant mice.  Exp Cell Res. 1999;  253 737-746
  • 64 Wang Z, Benoit G, Liu J. et al . Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors.  Nature. 2003;  423 555-560
  • 65 Wang Y, Thekdi N, Smallwood PM, Macke JP, Nathans J. Frizzled-3 is required for the development of major fiber tracts in the rostral CNS.  J Neurosci. 2002;  22 8563-8573
  • 66 Wang Y, Zhang J, Mori S, Nathans J. Axonal growth and guidance defects in frizzled3 knock-out mice: A comparison of diffusion tensor magnetic resonance imaging, neurofilament staining, and genetically directed cell labeling.  J Neurosci. 2006;  26 355-364
  • 67 Wei J, Hemmings GP. Lack of a genetic association between the frizzled-3 gene and schizophrenia in a British population.  Neurosci Lett. 2004;  366 336-338
  • 68 Wurst W, Bally-Cuif L. Neural plate patterning: upstream and downstream of the isthmic organizer.  Nat Rev Neurosci. 2001;  2 99-108
  • 69 Ye W, Shimamura K, Rubenstein JL, Hynes MA, Rosenthal A. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate.  Cell. 1998;  93 755-766
  • 70 Zervas M, Millet S, Ahn S, Joyner AL. Cell behaviors and genetic lineages of the mesencephalon and rhombomere 1.  Neuron. 2004;  43 345-357
  • 71 Zetterstrom RH, Solomin L, Jansson L. et al . Dopamine neuron agenesis in Nurr1-deficient mice.  Science. 1997;  276 248-250
  • 72 Zhou Q-Y, Palmiter RD. Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic.  Cell. 1995;  83 1197-1209

Correspondence

Dr. N. Prakash

Helmholtz Center Munich

German Research Center for Environmental Health (GmbH)

Institute of Developmental Genetics

Ingolstaedter Landstraße 1

85764 Neuherberg

Phone: +49/89/31 87 22 75

Fax: +49/89/31 87 30 99

Email: nilima.prakash@helmholtz-muenchen.de

    >