Thromb Haemost 2007; 98(01): 109-115
DOI: 10.1160/TH07-04-0310
Anniversary Issue Contribution
Schattauer GmbH

Heparan sulfate-protein interactions – A concept for drug design?

Ulf Lindahl
1   Department of MedicalBiochemistryand Microbiology, Uppsala University,Uppsala, Sweden
› Author Affiliations
Financial support: Our recent work, cited in this review, was supported by grants from the Swedish Research Council (32X-15023),the Swedish Cancer Society (4708-B02–01XAA), the Swedish Foundation for Strategic Research (A303:156e),and Polysackaridforskning AB (Uppsala, Sweden).
Further Information

Correspondence to:

Ulf Lindahl
Department of Medical Biochemistry and Microbiology
Uppsala University, Box 582
SE-751 23 Uppsala, Sweden
Phone: +4618 471 4196   
Fax: +4618 471 4367   

Publication History

Received 27 April 2007

Accepted 11 May 2007

Publication Date:
15 December 2017 (online)

 

Summary

The glycosaminoglycan, heparan sulfate (HS) is composed of alternating units of hexuronic acid and glucosamine, that are variously sulfate-substituted at different positions. Proteoglycans carrying HS chains are ubiquitously expressed at cell surfaces and in the extracellular matrix. The structures of these chains are highly variable, yet under strict bio-synthetic control. Due to their high negative charge,HS chains interact with a multitude of proteins, including growth factors/morphogens and their receptors, chemokines, and extracellular-matrix proteins.These interactions regulate key events in embryonic development and in homeostasis. HS-protein interactions vary with regard to specificity, and often seem to depend primarily on charge density rather than on strict carbohydrate sequence.The organization of sulfated domains along the HS chain appears to be of importance. HS-protein interactions are involved in a variety of pathophysiological processes, including inflammation, angiogenesis, and amyloid deposition. Drugs targeting such interactions may be useful in treatment of disease conditions as diverse as cancer, inflammatory bowel disease, and Alzheimer’s disease. Potential drugs may mimick HS oligosaccharides, but could also be peptides blocking the protein-binding domains of HS chains. Drug generation requires a firm understanding of the pathophysiological role of a given HS-protein interaction, and of the aspect of specificity.Even inhibition of HS biosynthesis may be considered.


#

 


#
  • References

  • 1 Bourin M-C, Lindahl U. Glycosaminoglycans and the regulation of blood coagulation. Biochem J 1993; 289: 313-330.
  • 2 Bernfield M, Götte M, Park PW. et al. Functions of cell surface heparan sulfate proteoglycans. Ann Rev Biochem 1999; 68: 729-777.
  • 3 Bishop J, Schuksz M, Esko J. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature. 2007 in press.
  • 4 Esko JD, Lindahl U. Molecular diversity of heparan sulfate. J Clin Invest 2001; 108: 169-173.
  • 5 Esko JE, Selleck SB. Order out of chaos: Assembly of ligand binding sites in heparan sulfate. Ann Rev Biochem 2002; 71: 435-471.
  • 6 Maccarana M, Sakura Y, Tawada A. et al. Domain structure of heparan sulfates from bovine organs. J Biol Chem 1996; 271: 17804-17810.
  • 7 Gallagher JT. Heparan sulfate: growth control with are stricted sequence menu. J Clin Invest 2001; 108: 357-361.
  • 8 Ledin J, Staatz W, Li JP. et al. Heparan sulfate structure in mice with genetically modified heparan sulfate production. J Biol Chem 2004; 279: 42732-42741.
  • 9 van Kuppevelt TH, Dennissen MA, van Venrooij WJ. et al. Generation and application of type-specific anti-heparan sulfate antibodies using phage display technology. Further evidence for heparan sulfate heterogeneity in the kidney. J Biol Chem 1998; 273: 12960-12966.
  • 10 Van den Born J, Gunnarsson K, Bakker MAH. et al. Presence of N-unsubstituted glucosamine units in native heparan sulfate revealed by a monoclonal antibody. J Biol Chem 1995; 270: 31303-31309.
  • 11 Ai X, Do AT, Lozynska O. et al. QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. J Cell Biol 2003; 162: 341-351.
  • 12 Vlodavsky I, Goldshmidt O, Zcharia E. et al. Mammalian heparanase: involvment in cancer metastasis, angiogenesis and normal development. Sem Cancer Biol 2002; 12: 121-129.
  • 13 Iozzo RV, San Antonio JD. Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest 2001; 108: 349-355.
  • 14 Casu B, Lindahl U. Structure and biological interactions of heparin and heparan sulfate. Adv Carbohydr Chem Biochem 2001; 57: 159-206.
  • 15 Rosenberg RD, Shworak NW, Liu J. et al. Heparan sulfate proteoglycans of the cardiovascularsystem. Specific structures emerge but how is synthesis regulated?. J Clin Invest 1997; 100 (Suppl. 11) S67-75.
  • 16 Shaklee PN, Glaser JH, Conrad HE. A sulfatase specific for glucuronic acid 2-sulfate residues in glycosaminoglycans. J Biol Chem 1985; 260: 9146-9149.
  • 17 Fedarko NS, Conrad HE. Aunique heparan sulfate in the nuclei of hepatocytes: structural changes with the growth state of the cells. J Cell Biol 1986; 102: 587-599.
  • 18 Lindahl B, Eriksson L, Lindahl U. Structure of heparan sulphate from human brain, with special regard to Alzheimer’s disease. Biochem J 1995; 306: 177-184.
  • 19 Norgard-Sumnicht K, Varki A. Endothelial heparan sulfate proteoglycans that bind to L-selectin have glucosamine residues with unsubstituted amino groups. J Biol Chem 1995; 270: 12012-12024.
  • 20 Westling C, Lindahl U. Location of N-unsubstituted glucosamine residues in heparan sulfate. The J Biol Chem 2002; 277: 49247-49255.
  • 21 Shukla D, Liu J, Blaiklock P. et al. A Novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 1999; 99: 13-22.
  • 22 Salmivirta M, Lidholt K, Lindahl U. Heparan sulfate -a piece of information. FASEB J 1996; 10: 1270-1279.
  • 23 Ashikari-Hada S, Habuchi H, Kariya Y. et al. Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library. J Biol Chem 2004; 279: 12346-12354.
  • 24 Powell AK, Yates EA, Fernig DG. et al. Interactions of heparin/heparan sulfate with proteins: appraisal of structural factors and experimental approaches. Glycobiology 2004; 14: 17R-30R.
  • 25 Jemth P, Kreuger J, Kusche-Gullberg M. et al. Bio-synthetic oligosaccharide libraries for identification of protein-binding heparan sulfate motifs. Exploring the structural diversity by screening for fibroblast growth factor (FGF)1 and FGF2 binding. J Biol Chem 2002; 277: 30567-30573.
  • 26 Kreuger J, Jemth P, Sanders-Lindberg E. et al. Fibroblast growth factors share binding sites in heparan sulphate. Biochem J 2005; 389: 145-150.
  • 27 Jastrebova N, Vanwildemeersch M, Rapraeger AC. et al. Heparan sulfate-related oligosaccharides in ternary complex formation with fibroblast growth factors 1 and 2 and their receptors. J Biol Chem 2006; 281: 26884-26892.
  • 28 Lin X, Wei G, Shi Z. et al. Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Dev Biol 2000; 224: 299-311.
  • 29 Kusche-Gullberg M, Kjellen L. Sulfotransferases in glycosaminoglycan biosynthesis. Curr Opin Struct Biol 2003; 13: 605-611.
  • 30 Li JP, Gong F, Hagner-McWhirter A. et al. Targeted disruption of a murine glucuronyl C5-epimerase gene results in heparan sulfate lacking L-iduronic acid and in neonatal lethality. J Biol Chem 2003; 278: 28363-28366.
  • 31 Inatani M, Irie F, Plump A. et al. Mammalian brain morphogenesis and midline axon guidance require heparan sulfate. Science 2003; 302: 1044-1046.
  • 32 Abramsson A, Kurup S, Busse M. et al. Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development. Genes Devel 2007; 21: 316-331.
  • 33 Ringvall M, Ledin J, Holmborn K. et al. Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1. J Biol Chem 2000; 275: 25926-25930.
  • 34 Merry CL, Bullock SL, Swan DC. et al. The molecular phenotype of heparan sulfate in the Hs2st-/- mutant mouse. J Biol Chem 2001; 276: 35429-35434.
  • 35 Kamimura K, Koyama T, Habuchi H. et al. Specific and flexible roles of heparan sulfate modifications in Drosophila FGF signaling. J Cell Biol 2006; 174: 773-778.
  • 36 Kreuger J, Spillmann D, Li JP. et al. Interactions between heparan sulfate and proteins: the concept of specificity. J Cell Biol 2006; 174: 323-327.
  • 37 Stickens D, Zak BM, Rougier N. et al. Mice deficient in Ext2 lack heparan sulfate and develop exostoses. Development (Cambridge) 2005; 132: 5055-5068.
  • 38 Westphal V, Murch S, Kim S. et al. Reduced heparan sulfate accumulation in enterocytes contributes to protein-losing enteropathy in a congenital disorder of glycosylation. Am J Pathol 2000; 157: 1917-1925.
  • 39 Raats CJ, Van Den Born J, Berden JH. Glomerular heparan sulfate alterations: mechanisms and relevance for proteinuria. Kidney Int 2000; 57: 385-400.
  • 40 Wang L, Fuster M, Sriramarao P. et al. Endothelial heparan sulfate deficiency impairs L-selectin-and chemokine-mediated neutrophil trafficking during inflammatory responses. Nature Immunol 2005; 6: 902-910.
  • 41 Parish CR. The role of heparan sulphate in inflammation. Nature Rev 2006; 6: 633-643.
  • 42 Fuster MM, Esko JD. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 2005; 5: 526-542.
  • 43 Vlodavsky I, Friedmann Y. Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest 2001; 108: 341-347.
  • 44 van Horssen J, Wesseling P, van den Heuvel LP. et al. Heparan sulphate proteoglycans in Alzheimer’s disease and amyloid-related disorders. Lancet Neurol 2003; 2: 482-492.
  • 45 Li JP, Galvis ML, Gong F. et al. In vivo fragmentation of heparan sulfate by heparanase overexpression renders miceresistant to amyloid protein A amyloidosis. Proc Natl Acad Sci USA 2005; 102: 6473-6477.
  • 46 Wang L, Brown JR, Varki A. et al. Heparin’s anti-inflammatory effects require glucosamine 6-O-sulfation and are mediated by blockade of L- and P-selectins. J Clin Invest 2002; 110: 127-136.
  • 47 Kuberan B, Lech MZ, Beeler DL. et al. Enzymatic synthesis of antithrombin III-binding heparan sulfate pentasaccharide. Nature Biotechnol 2003; 21: 1343-1346.
  • 48 Petitou M, Herault JP, Bernat A. et al. Synthesis of thrombin-inhibiting heparin mimeticswithout side effects. Nature 1999; 398: 417-422.
  • 49 Orgueira HA, Bartolozzi A, Schell P. et al. Modular synthesis of heparin oligosaccharides. Chemistry 2003; 9: 140-169.
  • 50 Khachigian LM, Parish CR. Phosphomannopentaosesulfate (PI-88): heparan sulfate mimetic with clinical potential in multiple vascular pathologies. Cardiov Drug Rev 2004; 22: 1-6.
  • 51 Naggi A, Casu B, Perez M. et al. Modulation of the heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol splitting. J Biol Chem 2005; 280: 12103-12113.
  • 52 Zhao H, Liu H, Chen Y. et al. Oligomannurarate sulfate, a novel heparanase inhibitor simultaneously targeting basic fibroblast growth factor, combats tumor angiogenesis and metastasis. Cancer Res 2006; 66: 8779-8787.
  • 53 Spillmann D, Witt D, Lindahl U. Defining the interleukin-8-binding domain of heparan sulfate. J Biol Chem 1998; 273: 15487-15493.
  • 54 Kreuger J, Matsumoto T, Vanwildemeersch M. et al. Role of heparan sulfate domain organization in endostatin inhibition of endothelial cell function. EMBO J 2002; 21: 6303-6311.
  • 55 Robinson CJ, Mulloy B, Gallagher JT. et al. VEGF165-binding sites within heparan sulfate en-compass two highly sulfated domains and can be liberated by K5 lyase. J Biol Chem 2006; 281: 1731-1740.
  • 56 Vogt AM, Pettersson F, Moll K. et al. Release of sequestered malaria parasites upon injection of a glycosaminoglycan. PLoS Pathogens 2006; 2: e100.
  • 57 Kisilevsky R, Lemieux LJ, Fraser PE. et al. Arrest-ing amyloidosis in vivo using small-molecule anionic sulphonates or sulphates: implications for Alzheimer’s disease. Nat Med 1995; 1: 143-148.
  • 58 Larsson H, Akerud P, Nordling K. et al. A Novel anti-angiogenicform of antithrombin with retained protein Ase binding ability and heparin affinity. J Biol Chem 2001; 276: 11996-2002.
  • 59 Vanwildemeersch M, Olsson AK, Gottfridsson E. et al. The anti-angiogenic His/Pro-rich fragment of histidine-rich glycoprotein binds to endothelial cell heparan sulfate in a Zn2+-dependent manner. J Biol Chem 2006; 281: 10298-10304.
  • 60 Giulian D, Haverkamp LJ, Yu J. et al. The HHQK domain of beta-amyloid provides a structural basis for the immunopathology of Alzheimer’s disease. J Biol Chem 1998; 273: 29719-29726.
  • 61 Belting M, Borsig L, Fuster MM. et al. Tumor attenuation by combined heparan sulfate and polyamine depletion. Proc Natl Acad Sci USA 2002; 99: 371-376.
  • 62 Kisilevsky R, Szarek WA, Ancsin J. et al. Novel glycosaminoglycan precursors as anti-amyloid agents, part III. J Mol Neurosci 2003; 20: 291-297.

Correspondence to:

Ulf Lindahl
Department of Medical Biochemistry and Microbiology
Uppsala University, Box 582
SE-751 23 Uppsala, Sweden
Phone: +4618 471 4196   
Fax: +4618 471 4367   

  • References

  • 1 Bourin M-C, Lindahl U. Glycosaminoglycans and the regulation of blood coagulation. Biochem J 1993; 289: 313-330.
  • 2 Bernfield M, Götte M, Park PW. et al. Functions of cell surface heparan sulfate proteoglycans. Ann Rev Biochem 1999; 68: 729-777.
  • 3 Bishop J, Schuksz M, Esko J. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature. 2007 in press.
  • 4 Esko JD, Lindahl U. Molecular diversity of heparan sulfate. J Clin Invest 2001; 108: 169-173.
  • 5 Esko JE, Selleck SB. Order out of chaos: Assembly of ligand binding sites in heparan sulfate. Ann Rev Biochem 2002; 71: 435-471.
  • 6 Maccarana M, Sakura Y, Tawada A. et al. Domain structure of heparan sulfates from bovine organs. J Biol Chem 1996; 271: 17804-17810.
  • 7 Gallagher JT. Heparan sulfate: growth control with are stricted sequence menu. J Clin Invest 2001; 108: 357-361.
  • 8 Ledin J, Staatz W, Li JP. et al. Heparan sulfate structure in mice with genetically modified heparan sulfate production. J Biol Chem 2004; 279: 42732-42741.
  • 9 van Kuppevelt TH, Dennissen MA, van Venrooij WJ. et al. Generation and application of type-specific anti-heparan sulfate antibodies using phage display technology. Further evidence for heparan sulfate heterogeneity in the kidney. J Biol Chem 1998; 273: 12960-12966.
  • 10 Van den Born J, Gunnarsson K, Bakker MAH. et al. Presence of N-unsubstituted glucosamine units in native heparan sulfate revealed by a monoclonal antibody. J Biol Chem 1995; 270: 31303-31309.
  • 11 Ai X, Do AT, Lozynska O. et al. QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. J Cell Biol 2003; 162: 341-351.
  • 12 Vlodavsky I, Goldshmidt O, Zcharia E. et al. Mammalian heparanase: involvment in cancer metastasis, angiogenesis and normal development. Sem Cancer Biol 2002; 12: 121-129.
  • 13 Iozzo RV, San Antonio JD. Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest 2001; 108: 349-355.
  • 14 Casu B, Lindahl U. Structure and biological interactions of heparin and heparan sulfate. Adv Carbohydr Chem Biochem 2001; 57: 159-206.
  • 15 Rosenberg RD, Shworak NW, Liu J. et al. Heparan sulfate proteoglycans of the cardiovascularsystem. Specific structures emerge but how is synthesis regulated?. J Clin Invest 1997; 100 (Suppl. 11) S67-75.
  • 16 Shaklee PN, Glaser JH, Conrad HE. A sulfatase specific for glucuronic acid 2-sulfate residues in glycosaminoglycans. J Biol Chem 1985; 260: 9146-9149.
  • 17 Fedarko NS, Conrad HE. Aunique heparan sulfate in the nuclei of hepatocytes: structural changes with the growth state of the cells. J Cell Biol 1986; 102: 587-599.
  • 18 Lindahl B, Eriksson L, Lindahl U. Structure of heparan sulphate from human brain, with special regard to Alzheimer’s disease. Biochem J 1995; 306: 177-184.
  • 19 Norgard-Sumnicht K, Varki A. Endothelial heparan sulfate proteoglycans that bind to L-selectin have glucosamine residues with unsubstituted amino groups. J Biol Chem 1995; 270: 12012-12024.
  • 20 Westling C, Lindahl U. Location of N-unsubstituted glucosamine residues in heparan sulfate. The J Biol Chem 2002; 277: 49247-49255.
  • 21 Shukla D, Liu J, Blaiklock P. et al. A Novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 1999; 99: 13-22.
  • 22 Salmivirta M, Lidholt K, Lindahl U. Heparan sulfate -a piece of information. FASEB J 1996; 10: 1270-1279.
  • 23 Ashikari-Hada S, Habuchi H, Kariya Y. et al. Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library. J Biol Chem 2004; 279: 12346-12354.
  • 24 Powell AK, Yates EA, Fernig DG. et al. Interactions of heparin/heparan sulfate with proteins: appraisal of structural factors and experimental approaches. Glycobiology 2004; 14: 17R-30R.
  • 25 Jemth P, Kreuger J, Kusche-Gullberg M. et al. Bio-synthetic oligosaccharide libraries for identification of protein-binding heparan sulfate motifs. Exploring the structural diversity by screening for fibroblast growth factor (FGF)1 and FGF2 binding. J Biol Chem 2002; 277: 30567-30573.
  • 26 Kreuger J, Jemth P, Sanders-Lindberg E. et al. Fibroblast growth factors share binding sites in heparan sulphate. Biochem J 2005; 389: 145-150.
  • 27 Jastrebova N, Vanwildemeersch M, Rapraeger AC. et al. Heparan sulfate-related oligosaccharides in ternary complex formation with fibroblast growth factors 1 and 2 and their receptors. J Biol Chem 2006; 281: 26884-26892.
  • 28 Lin X, Wei G, Shi Z. et al. Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Dev Biol 2000; 224: 299-311.
  • 29 Kusche-Gullberg M, Kjellen L. Sulfotransferases in glycosaminoglycan biosynthesis. Curr Opin Struct Biol 2003; 13: 605-611.
  • 30 Li JP, Gong F, Hagner-McWhirter A. et al. Targeted disruption of a murine glucuronyl C5-epimerase gene results in heparan sulfate lacking L-iduronic acid and in neonatal lethality. J Biol Chem 2003; 278: 28363-28366.
  • 31 Inatani M, Irie F, Plump A. et al. Mammalian brain morphogenesis and midline axon guidance require heparan sulfate. Science 2003; 302: 1044-1046.
  • 32 Abramsson A, Kurup S, Busse M. et al. Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development. Genes Devel 2007; 21: 316-331.
  • 33 Ringvall M, Ledin J, Holmborn K. et al. Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1. J Biol Chem 2000; 275: 25926-25930.
  • 34 Merry CL, Bullock SL, Swan DC. et al. The molecular phenotype of heparan sulfate in the Hs2st-/- mutant mouse. J Biol Chem 2001; 276: 35429-35434.
  • 35 Kamimura K, Koyama T, Habuchi H. et al. Specific and flexible roles of heparan sulfate modifications in Drosophila FGF signaling. J Cell Biol 2006; 174: 773-778.
  • 36 Kreuger J, Spillmann D, Li JP. et al. Interactions between heparan sulfate and proteins: the concept of specificity. J Cell Biol 2006; 174: 323-327.
  • 37 Stickens D, Zak BM, Rougier N. et al. Mice deficient in Ext2 lack heparan sulfate and develop exostoses. Development (Cambridge) 2005; 132: 5055-5068.
  • 38 Westphal V, Murch S, Kim S. et al. Reduced heparan sulfate accumulation in enterocytes contributes to protein-losing enteropathy in a congenital disorder of glycosylation. Am J Pathol 2000; 157: 1917-1925.
  • 39 Raats CJ, Van Den Born J, Berden JH. Glomerular heparan sulfate alterations: mechanisms and relevance for proteinuria. Kidney Int 2000; 57: 385-400.
  • 40 Wang L, Fuster M, Sriramarao P. et al. Endothelial heparan sulfate deficiency impairs L-selectin-and chemokine-mediated neutrophil trafficking during inflammatory responses. Nature Immunol 2005; 6: 902-910.
  • 41 Parish CR. The role of heparan sulphate in inflammation. Nature Rev 2006; 6: 633-643.
  • 42 Fuster MM, Esko JD. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 2005; 5: 526-542.
  • 43 Vlodavsky I, Friedmann Y. Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest 2001; 108: 341-347.
  • 44 van Horssen J, Wesseling P, van den Heuvel LP. et al. Heparan sulphate proteoglycans in Alzheimer’s disease and amyloid-related disorders. Lancet Neurol 2003; 2: 482-492.
  • 45 Li JP, Galvis ML, Gong F. et al. In vivo fragmentation of heparan sulfate by heparanase overexpression renders miceresistant to amyloid protein A amyloidosis. Proc Natl Acad Sci USA 2005; 102: 6473-6477.
  • 46 Wang L, Brown JR, Varki A. et al. Heparin’s anti-inflammatory effects require glucosamine 6-O-sulfation and are mediated by blockade of L- and P-selectins. J Clin Invest 2002; 110: 127-136.
  • 47 Kuberan B, Lech MZ, Beeler DL. et al. Enzymatic synthesis of antithrombin III-binding heparan sulfate pentasaccharide. Nature Biotechnol 2003; 21: 1343-1346.
  • 48 Petitou M, Herault JP, Bernat A. et al. Synthesis of thrombin-inhibiting heparin mimeticswithout side effects. Nature 1999; 398: 417-422.
  • 49 Orgueira HA, Bartolozzi A, Schell P. et al. Modular synthesis of heparin oligosaccharides. Chemistry 2003; 9: 140-169.
  • 50 Khachigian LM, Parish CR. Phosphomannopentaosesulfate (PI-88): heparan sulfate mimetic with clinical potential in multiple vascular pathologies. Cardiov Drug Rev 2004; 22: 1-6.
  • 51 Naggi A, Casu B, Perez M. et al. Modulation of the heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol splitting. J Biol Chem 2005; 280: 12103-12113.
  • 52 Zhao H, Liu H, Chen Y. et al. Oligomannurarate sulfate, a novel heparanase inhibitor simultaneously targeting basic fibroblast growth factor, combats tumor angiogenesis and metastasis. Cancer Res 2006; 66: 8779-8787.
  • 53 Spillmann D, Witt D, Lindahl U. Defining the interleukin-8-binding domain of heparan sulfate. J Biol Chem 1998; 273: 15487-15493.
  • 54 Kreuger J, Matsumoto T, Vanwildemeersch M. et al. Role of heparan sulfate domain organization in endostatin inhibition of endothelial cell function. EMBO J 2002; 21: 6303-6311.
  • 55 Robinson CJ, Mulloy B, Gallagher JT. et al. VEGF165-binding sites within heparan sulfate en-compass two highly sulfated domains and can be liberated by K5 lyase. J Biol Chem 2006; 281: 1731-1740.
  • 56 Vogt AM, Pettersson F, Moll K. et al. Release of sequestered malaria parasites upon injection of a glycosaminoglycan. PLoS Pathogens 2006; 2: e100.
  • 57 Kisilevsky R, Lemieux LJ, Fraser PE. et al. Arrest-ing amyloidosis in vivo using small-molecule anionic sulphonates or sulphates: implications for Alzheimer’s disease. Nat Med 1995; 1: 143-148.
  • 58 Larsson H, Akerud P, Nordling K. et al. A Novel anti-angiogenicform of antithrombin with retained protein Ase binding ability and heparin affinity. J Biol Chem 2001; 276: 11996-2002.
  • 59 Vanwildemeersch M, Olsson AK, Gottfridsson E. et al. The anti-angiogenic His/Pro-rich fragment of histidine-rich glycoprotein binds to endothelial cell heparan sulfate in a Zn2+-dependent manner. J Biol Chem 2006; 281: 10298-10304.
  • 60 Giulian D, Haverkamp LJ, Yu J. et al. The HHQK domain of beta-amyloid provides a structural basis for the immunopathology of Alzheimer’s disease. J Biol Chem 1998; 273: 29719-29726.
  • 61 Belting M, Borsig L, Fuster MM. et al. Tumor attenuation by combined heparan sulfate and polyamine depletion. Proc Natl Acad Sci USA 2002; 99: 371-376.
  • 62 Kisilevsky R, Szarek WA, Ancsin J. et al. Novel glycosaminoglycan precursors as anti-amyloid agents, part III. J Mol Neurosci 2003; 20: 291-297.