Nuklearmedizin 2014; 53(06): 221-226
DOI: 10.3413/Nukmed-0640-14-01
Original article
Schattauer GmbH

Estimation of regional cerebral blood flow using N-isopropyl-p-123I iodoamphetamine acquisition data from the lungs and brain

An improved non-invasive techniqueBestimmung des regionalen zerebralen Blutflusses mit N-Isopropyl-p-Iod-123-Iodamphetamin mittels Akquisitionsdaten von Lunge und GehirnEine verbesserte nicht-invasive Abschätzung
S. Abe
1   Department of Radiological Technology, Nagoya University Hospital, Nagoya, Japan
,
K. Kato
2   Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
,
Y. Takahashi
3   Rikkyo University Graduate School of Sociology, Tokyo, Japan
,
N. Fujita
1   Department of Radiological Technology, Nagoya University Hospital, Nagoya, Japan
,
M. Ikeda
2   Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
,
N. Ota
4   Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
,
Y. Kajita
5   Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
,
S. Yamamoto
2   Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
,
S. Naganawa
4   Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
› Author Affiliations
Further Information

Publication History

received: 17 January 2014

accepted in revised form: 06 July 2014

Publication Date:
04 January 2018 (online)

Summary

Aim: Previously, we devised a method for estimating 123I labeled N-isopropyl-p-iodo- amphetamine (123I IMP) arterial blood activity at 10 minutes after intravenous injection of 123I IMP (Ca10) without any blood sampling using 123I IMP autoradiography (ARG) acquisition data, and verified its usefulness for quantification of regional cerebral blood flow (rCBF). In this study, we attempted to develop an improved noninvasive method for estimating rCBF. Patients, methods: 123I IMP studies with 23 patients and 15O-H2O positron emission tomography (PET) ARG studies with 20 patients were evaluated. Multiple regression analysis was used to estimate an integral of the arterial blood counts during the time after injection of 123I (JCa) using parameters from the time series of the lung counts and brain counts as the explanatory variables and the fraction [brain single-photon emission computed tomography (SPECT) average count / the mean of rCBFs (mean CBF) measured by 15O-H2O PET ARG method] as the objective variable. Results: The regression equation was as follows: Estimated JCa = (7.09x10-3 · Cb12) - (1.57x10-4 · CbpreSPECT) + (9.48x10-5 · CbpostSPECT) + (1.35x10-4· L15) - (6.95x10-4· L33) + (7.61x10-4· L81) - (0.417), where Cb12: brain count at 12 minutes, Cbpre-SPECT: brain count before SPECT, Cbpost-SPECT: brain count after SPECT, L15, L33, and L81: lung count at 15, 33, and 81 seconds, respectively. The mean CBF values (ml/min/100g) calculated using the estimated JCa values more closely correlated with those measured by 15O-H2O PET ARG method (r = 0.833, p < 0.01) than those obtained by our previous method (r = 0.590, p < 0.01). Conclusion: The rCBFs obtained by this method approximated more accurately to the values measured by 15O-H2O PET ARG method than those obtained by our previous method.

Zusammenfassung

Ziel: In einer früheren Arbeit wurde eine Methode vorgestellt, ohne Blutentnahmen die Aktivität von 123I-markiertem N-Isopropyl- p-Iodamphetamin (123I-IMP) im arteriellen Blut 10 Minuten nach intravenöser Injektion abzuschätzen (Ca10), und deren Nutzen zur Quantifizierung des regionalen zerebralen Blutflusses (rCBF) mittels 123I-IMP-Autoradio- graphie (ARG) verifiziert. In dieser Studie wurde versucht, eine verbesserte, nicht-inva- sive Methode zur Schätzung des rCBF zu entwickeln. Patienten, Methoden: Untersuchungen mit 123I-IMP an 23 Patienten und 15O-H2O-Positronenemissionstomographie (PET) ARG an 20 Patienten wurden evaluiert. Zur Abschätzung des Zeitintegrals der Zählrate im arteriellen Blut (JCa) nach Injektion von 123I wurde eine multiple Regressionsanalyse durchgeführt. Dabei wurden Parameter aus den Aufnahmeserien über der Lunge und dem Gehirn als erklärende Variablen verwendet. Zielvariable war der Quotient aus der durchschnittlichen Zählrate des Gehirns in der Einzelphotonen-Emissionscomputertomographie (SPECT) und dem Mittelwert der rCBFs (mittlerer CBF) gemessen mittels 15O-H2O-PET-ARG. Ergebnisse: Die Regressionsgleichung lautete: geschätztes JCa = (7,09x10-3 · Cb12) - (1,57x10-4 · CbpreSPECT) + (9,48x10-5 · CbpostSPECT) + (1,35x10-4 · L15) - (6,95x10-4 · L33) + (7,61x10-4· L81) - (0,417). Dabei ist Cb12 die Zählrate für das Gehirn 12 Minuten p. i., Cbpre-SPECT und Cbpost-SPECT sind die Zählraten des Gehirns vor bzw. nach SPECT, sowie L15, L33 bzw. L81 die Zählraten über der Lunge 15, 33 bzw. 81 Sekunden nach Injektion. Die anhand der geschätzten jCa- Werte berechneten mittleren CBF-Werte (ml/min/100 g) korrelierten stärker mit den Werten, die mittels der 15O-H2O-PET-ARG gemessen wurden (r = 0,833, p < 0,01), als die mit der früher beschriebenen Methode bestimmten Werte (r = 0,590, p < 0,01). Schlussfolgerung: Im Vergleich mit den gemessenen rCBF-Werten der 15O-H2O-PET- ARG liefert die Abschätzung mit der vorgestellten Methode eine bessere Näherung als das früher beschriebene Verfahren.

 
  • References

  • 1 Abe S, Kato K, Takahashi Y. et al. Estimation of I-123 IMP arterial blood activity using I-123 IMP acquisition data from the lungs and brain without any blood sampling: Validation of its usefulness for quantification of regional cerebral blood flow. Clin Nucl Med 2012; 37: 258-263.
  • 2 Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H2O-15JX1T. Theory and error analysis. J Nucl Med 1983; 24: 782-789.
  • 3 Iida H, Itoh H, Bloomfield P. et al. A method to quantitate cerebral blood flow using a rotating gamma camera and iodine-123 iodoamphetamine with one blood sampling. Eur J Nucl Med 1994; 21: 1072-1084.
  • 4 Iida H, Itoh H, Nakazawa M. et al. Quantitative mapping of regional cerebral blood flow using iodine-123-IMP and SPECT. J Nucl Med 1994; 35: 2019-2030.
  • 5 Iida H, Kanno I, Miura S. et al. Error analysis of a quantitative cerebral blood flow measurement using H2O-15 autoradiography and positron emission tomography, with respect to the dispersion of the input function. J Cereb Blood Flow Metab 1986; 6: 536-545.
  • 6 Innis RB, Cunningham VJ, Delforge J. et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 2007; 27: 1533-1539.
  • 7 Kaminaga T, Kunimatsu N, Chikamatsu T. et al. Validation of CBF measurement with non-invasive microsphere method (NIMS) compared with autoradiography method (ARG). Ann Nucl Med 2001; 15: 61-64.
  • 8 Kanno I, Iida H, Miura S. et al. A system for cerebral blood flow measurement using an H2O-15 autoradiographic method and positron emission tomography. J Cereb Blood Flow Metab 1987; 7: 143-153.
  • 9 Kuhl DE, Barrio JR, Huang SC. et al. Quantifying local cerebral blood flow by N-isopropyl-p [I-123] iodoamphetamin (IMP) tomography. J Nucl Med 1982; 23: 196-203.
  • 10 Matsuda H, Seki H, Sumiya H. et al. Quantitative local cerebral blood flow by N-isopropyl-(iodine 123) p-iodoamphetamine and single photon emission computed tomography with rotating gamma camera. Am J Physiol Imaging 1986; 1: 186-194.
  • 11 Mimura H, Sone T, Takahashi Y. et al. Measurement of regional blood flow with I-123 IMP using one-point venous blood sampling and causality analysis: evaluation by comparison with conventional continuous arterial blood sampling. Ann Nucl Med 2006; 20: 589-595.
  • 12 Nishizawa S, Shiozaki T, Ueno M. et al. A new method to estimate rCBF using IMP and SPECT without any blood sampling. Ann Nucl Med 2000; 14: 433-440.
  • 13 Okamoto K, Ushijima Y, Okuyama C. et al. Measurement of cerebral blood flow using graph plot analysis and I-123 iodoamphetamine. Clin Nucl Med 2002; 27: 191-196.
  • 14 Raichle ME, Martin WR, Herscovitch P. et al. Brain blood flow measured with intravenous H2O-15.BU. Implementation and validation. J Nucl Med 1983; 24: 790-798.
  • 15 Takeuchi R, Matsuda H, Yoshioka K. et al. Cerebral blood flow SPET in transient global amnesia with automated ROI analysis by 3DSRT. Eur J Nucl Mol Imaging 2004; 31: 578-589.
  • 16 Takeuchi R, Yonekura Y, Matsuda H. et al. Usefulness of a three-dimentional stereotaxic ROI template on anatomically standardised Tc-99m ECD SPET. Eur J Nucl Mol Imaging 2002; 29: 331-341.
  • 17 Tomiguchi S, Tashiro K, Shiraishi S. et al. Estimation of 123I IMP arterial blood activity from dynamic planar imaging of the chest using a graph plot method for the quantification of regional cerebral blood flow. Ann Nucl Med 2010; 24: 387-393.
  • 18 Yokoi T, Iida H, Itoh H. et al. A new graphic plot analysis for cerebral blood flow and partition coefficient with iodine-123-iodoamphetamine and dynamic SPECT validation studies using oxygen-15-water and PET. J Nucl Med 1993; 34: 498-505.
  • 19 Yonekura Y, Fujita T, Nishizawa S. et al. Temporal changes in accumulation of N-isopropyl-p-iodoamphetamine in human brain: relation to lung clearance. J Nucl Med 1989; 30: 1977-1981.