Hamostaseologie 2014; 34(02): 115-132
DOI: 10.5482/HAMO-13-08-0041
Review
Schattauer GmbH

Biomarkers for arterial and venous thrombotic disorders

Biomarker für arterielle und venöse thrombotische Erkrankungen
C. Mannhalter
1   Department of Laboratory Medicine, Medical University Vienna, Austria
› Author Affiliations
Further Information

Publication History

received: 01 August 2013

accepted in revised form: 21 March 2014

Publication Date:
28 December 2017 (online)

Summary

The haemostatic system maintains the blood in a fluid state, but allows rapid clot formation at sites of vascular injury to prevent excessive bleeding. Unbalances within the haemostatic system can lead to thrombosis. Inspite of successful research our understanding of the disease pathogenesis is still incomplete. There is great hope that genetic, genomic, and epigenetic discoveries will enhance the diagnostic capability, and improve the treatment options. During the preceding 20 years, the identification of polymorphisms and the elucidation of their role in arterial and venous thromboses became an important area of research. Today, a large body of data is available regarding associations of single nucleotide polymorphisms (SNPs) in candidate genes with plasma concentrations and e. g. the risk of ischaemic stroke or myocardial infarction. However, the results for individual polymorphisms and genes are often controversial. It is now well established that besides acquired also hereditary risk factors influence the occurrence of thrombotic events, and environmental factors may add to this risk. Currently available statistical methods are only able to identify combined risk genotypes if very large patient collectives (>10 000 cases) are tested, and appropriate algorithms to evaluate the data have yet to be developed. Further research is needed to understand the functional effects of genetic variants in genes of blood coagulation proteins that are critical to the pathogenesis of arterial and venous thrombotic disorders. In this review genetic variants in selected genes of the haemo static system and their relevance for arterial and venous thrombosis will be discussed.

Zusammenfassung

Das Gerinnungssystem stellt sicher, dass das fließende Blut im Falle von Verletzungen sehr rasch ein Gerinnsel bilden kann, Wunden verschließt und damit einen Blutverlust großen Ausmaßes verhindert. Dies wird durch ein feinst ausgewogenes Gleichgewicht zwischen pro- und antikoagulatorischer Aktivität gewährleistet. Jedwede Verschiebung der Balance kann zu Thrombosen oder Blutungen führen. Trotz umfangreicher Forschungsaktivitä-ten sind die pathogenetischen Ursachen dafür nicht gut verstanden. Es besteht die Hoffnung, dass genetische, genomische und epigeneti-sche Erkenntnisse das Wissen vertiefen, die Diagnostik schärfen und schließlich die Therapie verbessern werden. Im Laufe der vergangenen 20 Jahre wurden zahlreiche genetischen Varianten identifiziert und hinsichtlich ihrer Bedeutung für arterielle und venöse Thrombosen wissenschaftlich untersucht. Heute liegen uns umfangreiche Daten zur Assoziation verschiedenster polymorpher Varianten von zahlreichen Kandidatengenen mit den Plas-makonzentrationen der entsprechenden Proteine und z. B. dem Risiko für Schlaganfall und Herzinfarkt vor. Allerdings sind die publizierten Ergebnisse zur Rolle verschiedener Polymorphismen und ihrem Beitrag zum Auftreten von Thrombosen oft kontrovers. Das mag zum Teil mit dem Einfluss externer Fak-toren auf das Thromboserisiko zusammen-hängen, es liegt aber wahrscheinlich auch an den statistischen Analyseverfahren und der erforderlichen großen Zahl der Patienten. Zur Erreichung signifikanter Ergebnisse benötigt man sehr große Kohorten (>10 000 Fälle), die oft sehr heterogen sind. Ohne Zweifel bedarf es neuer Algorithmen, um die immer umfangreicheren Daten sinnvoll auszuwerten und die verschiedenen funktionellen Effekte, die für die Pathogenese arterieller und venöser Thrombosen verantwortlich sind, zu verste-hen.

In diesem Übersichtsbeitrag werden verschiedene Varianten in ausgewählten Genen des Hämostasesystems vorgestellt und ihre Relevanz für arterielle und venöse Thrombosen kritisch diskutiert.

 
  • References

  • 1 Ross R. Atherosclerosis — an inflammatory disease. N Engl J Med 1999; 340: 115-126.
  • 2 Libby P, Ridker P, Maseri A. Inflammation and atherosclerosis. Circulation 2002; 105: 1135-1143.
  • 3 Yang Q, Kathiresan S, Lin JP. et al. Genome-wide association and linkage analyses of hemostatic factors and hematological phenotypes in the Framingham Heart Study. BMC Med Genet 2007; 08 (Suppl. 01) S12.
  • 4 Knowles JW, Wang H, Itakura H. et al. Association of polymorphisms in platelet and hemostasis system genes with acute myocardial infarction. Am Heart J 2007; 154: 1052-1058.
  • 5 Guella I, Duga S, Ardissino D. et al. Common variants in the haemostatic gene pathway contribute to risk of early-onset myocardial infarction in the Italian population. Thromb Haemost 2011; 106: 655-664.
  • 6 Lotta LA, Wang M, Yu J. et al. Identification of genetic risk variants for deep vein thrombosis by multiplexed next-generation sequencing of 186 hemostatic/pro-in flammatory genes. BMC Med Genomics 2012; 05: 7.
  • 7 Lanktree MB, Dichgans M, Hegele RA. Advances in genomic analysis of stroke: what have we learned and where are we headed?. Stroke 2010; 41: 825-832.
  • 8 Fechtel K, Osterbur ML, Kehrer-Sawatzki H. et al. Delineating the Hemostaseome as an aid to individualize the analysis of the hereditary basis of thrombotic and bleeding disorders. Hum Genet 2011; 130: 149-166.
  • 9 Müller F, Mutch NJ, Schenk WA. et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 2009; Dec 11; 139 (06) 1143-56.
  • 10 Müller F, Renné T. Platelet polyphosphates: the nexus of primary and secondary hemostasis. Scand J Clin Lab Invest 2011; 71 (02) 82-86.
  • 11 Puy C, Tucker EI, Wong ZC. et al. Factor XII promotes blood coagulation independent of factor XI in the presence of long-chain polyphosphates. J Thromb Haemost 2013; 11: 1341-52.
  • 12 Faxälv L, Boknäs N, Ström JO. et al. Putting polyphosphates to the test: evidence against platelet-induced activation of factor XII. Blood 2013; 122: 3818-3824.
  • 13 Franco RF, Reitsma PH. Gene polymorphisms of the haemostatic system and the risk of arterial thrombotic disease Br J Haematol. 2001; 115: 491-506.
  • 14 Blake GJ, Schmitz C, Lindpaintner K, Ridker PM. Mutation in the promoter region of the beta-fibrinogen gene and the risk of future myocardial infarction, stroke and venous thrombosis Eur Heart J. 2001; 22: 2262-2266.
  • 15 Oudot-Mellakh T, Cohen W, Germain M. et al. Genome wide association study for plasma levels of natural anticoagulant inhibitors and protein C anticoagulant pathway: the MARTHA project. Br J Haematol 2012; 157: 230-239.
  • 16 Lee C, Scherer SW. The clinical context of copy number variation in the human genome. Expert Rev Mol Med 2010; 12: e8.
  • 17 Brass LM, Hartigan PM, Page WF, Concato J. Importance of cerebrovascular disease in studies of myocardial infarction. Stroke 1996; 27: 1173-1176.
  • 18 Brass LM, Isaacsohn JL, Merikangas KR, Robinette CD. A study of twins and stroke. Stroke 1992; 23: 221-223.
  • 19 de Lange M, Snieder H, Ariëns RA. et al. The genetics of haemostasis: a twin study. Lancet 2001; 357: 101-105.
  • 20 Peetz D, Victor A, Adams P. et al. Genetic and environmental influences on the fibrinolytic system: a twin study. Thromb Haemost 2004; 92: 344-351.
  • 21 Bladbjerg EM, de Maat MP, Christensen K. et al. Genetic influence on thrombotic risk markers in the elderly--a Danish twin study. J Thromb Haemost 2006; 04: 599-607.
  • 22 Huber P, Laurent M, Dalmon J. Human beta-fibrinogen gene expression. Upstream sequences involved in its tissue specific expression and its dexamethasone and interleukin 6 stimulation. J Biol Chem 1990; 265: 5695-701.
  • 23 Zhang Z, Fuentes NL, Fuller GM. Characterization of the IL-6 responsive elements in the gamma fibrinogen gene promoter. J Biol Chem 1995; 270: 24287-24291.
  • 24 Hu CH, Harris JE, Davie EW, Chung DW. Characterization of the 5’-flanking region of the gene for the alpha chain of human fibrinogen. J Biol Chem 1995; 270: 28342-28349.
  • 25 Heinrich J, Balleisen L, Schulte H. et al. Fibrinogen and factor VII in the prediction of coronary risk. Results from the PROCAM study in healthy men. Arterioscler Thromb 1994; 14: 54-59.
  • 26 Wilhelmsen L, Svardsudd K, Korsan-Bengtsen K. et al. Fibrinogen as a risk factor for stroke and myocardial infarction. N Engl J Med 1984; 311: 501-505.
  • 27 reviewed in Green FR. Fibrinogen polymorphisms and atherothrombotic disease. Ann N Y Acad Sci 2001; 936: 549-59 de Maat MP. Effects of diet, drugs, and genes on plasma fibrinogen levels. Ann N Y Acad Sci.2001;936:509–21.
  • 28 Siegerink B, Rosendaal FR, Algra A. Genetic variation in fibrinogen; its relationship to fibrinogen levels and the risk of myocardial infarction and ischemic stroke. J Thromb Haemost 2009; 07: 385-390.
  • 29 Carter AM, Catto AJ, Grant PJ. Determinants of tPA antigen and associations with coronary artery disease and acute cerebrovascular disease. Thromb Haemost 1998; 80: 632-636.
  • 30 Siebenlist KR, Meh DA, Mosesson MW. Protransglutaminase (factor XIII) mediated crosslinking of fibrinogen and fibrin. Thromb Haemost 2001; 86: 1221-1228.
  • 31 reviewed in Cilia La Corte AL, Philippou H, Ariëns RA. Role of fibrin structure in thrombosis and vascular disease. Adv Protein Chem Struct Biol 2011; 83: 75-127.
  • 32 Lord ST. Molecular mechanisms affecting fibrin structure and stability. Arterioscler Thromb Vasc Biol 2011; 31: 494-499.
  • 33 Mikkola H, Syrjälä M, Rasi V. et al. Deficiency in the A-subunit of coagulation factor XIII: two novel point mutations demonstrate different effects on transcript levels. Blood 1994; 84: 517-525.
  • 34 Kohler HP, Grant PJ. The role of factor XIII Val34Leu in cardiovascular disease. QJM 1999; 92: 67-72.
  • 35 Ariens RA, Philippou H, Nagaswami C. et al. The factor XIII V34L polymorphism accelerates thrombin activation of factor XIII and affects cross-linked fibrin structure. Blood 2000; 96: 988-995.
  • 36 Corral J, Gonzalez-Conejero R, Iniesta JA. et al. The FXIII Val34Leu polymorphism in venous and arterial thromboembolism. Haematologica 2000; 85: 293-297.
  • 37 Bereczky Z, Muszbek L. Factor XIII and venous thromboembolism. Semin Thromb Hemost 2011; 37: 305-314.
  • 38 Silvain J, Pena A, Vignalou JB. et al. FXIII-A Leu34 genetic variant in premature coronary artery disease: a genotype–phenotype case control study. Thromb Haemost 2011; 106: 511-520.
  • 39 Endler G, Funk M, Haering D. et al. Is the factor XIII 34Val/Leu polymorphism a protective factor for cerebrovascular disease?. Br J Haematol 2003; 120: 310-314.
  • 40 Shemirani AH, Pongrácz E, Antal Bfi. et al. Factor XIII A subunit Val34Leu polymorphism in patients suffering atherothrombotic ischemic stroke. Thromb Res 2010; 126: 159-162.
  • 41 Elbaz A, Poirier O, Canaple S. et al. Val34Leu polymorphism in the factor XIII gene and brain infarction. Blood 2000; 95: 586-591.
  • 42 Li B, Zhang L, Yin Y. et al. Lack of evidence for association between factor XIII-A Val34Leu polymorphism and ischemic stroke: a meta-analysis of 8,800 subjects. Thromb Res 2012; 130: 654-660.
  • 43 Babu MS, Prabha TS, Kaul S. et al. Association of genetic variants of fi brinolytic system with stroke and stroke subtypes. Gene 2012; 495: 76-80.
  • 44 Macko RF, Kittner SJ, Epstein A. et al. Elevated tissue plasminogen activator antigen and stroke risk. The stroke prevention in young women study. Stroke 1999; 30: 7-11.
  • 45 Jood K, Ladenvall P, Tjärnlund-Wolf A. et al. Fibrinolytic gene polymorphism and ischemic stroke. Stroke 2005; 36: 2077-2081.
  • 46 Erikson P, Kallin B, Van’T Hooft FM. et al. Allelespeci fi c increase in basal transcription of plasminogen activator inhibitor 1 gene is associated with myocardial infarction. Proc Natl Acad Sci USA 1995; 92: 1851-1855.
  • 47 Gong LL, Peng JH, Han FF. et al. Association of tissue plasminogen activator and plasminogen activator inhibitor polymorphism with myocardial infarction: A meta-analysis. Thromb Res 2012; 130: e43-e51.
  • 48 Endler G, Lalouschek W, Exner M. et al. The 4G/4G genotype at nucleotide position −675 in the promoter region of the plasminogen activator inhibitor 1 (PAI-1) gene is less frequent in young patients with minor stroke than in controls. Br J Haematol 2000; 110: 469-471.
  • 49 Roest M, van der Schouw YT, Banga JD. et al. Plasminogen activator inhibitor 4G polymorphism is associated with decreased risk of cerebrovascular mortality in older women. Circulation 2000; 101: 67-70.
  • 50 Hoekstra T, Geleijnse JM, Kluft C. et al. 4G/4G genotype of PAI-1 gene is associated with reduced risk of stroke in elderly. Stroke 2003; 34: 2822-2828.
  • 51 Saidi S, Slamia LB, Mahjoub T. et al. Association of PAI-1 4G/5G and −844G/A gene polymorphism and changes in PAI-1/tPA levels in stroke: a case–control study. J Stroke Cerebrovasc Dis 2007; 16: 153-159.
  • 52 Wiklund PG, Nilsson L, Ardnor SN. et al. Plasminogen activator inhibitor-1 4G/5G polymorphism and risk of stroke: replicated fi ndings in two nested case–control studies based on independent cohorts. Stroke 2005; 36: 1661-1665.
  • 53 Jankun J, Skrzypczak-Jankun E. Val17Ile single nucleotide polymorphisms similarly as Ala15Thr could be related to the lower secretory dynamics of PAI-1 secretion: theoretical evidence. Curr Mol Med 2011; 11: 512-516.
  • 54 Parahuleva MS, Hölschermann H, Zandt D. et al. Circulating factor VII activating protease (FSAP) is associated with clinical outcome in acute coronary syndrome. Circ J 2012; 76: 2653-61.
  • 55 Meijers JC, McMullen BA, Bouma BN. The contact activation proteins: a structure/function overview. Agents Actions Suppl 1992; 38: 219-230.
  • 56 Nuijens JH, Huijbregts CC, Eerenberg-Belmer AJ. et al. Activation of the contact system of coagulation by a monoclonal antibody directed against a neodeterminant in the heavy chain region of human coagulation factor XII (Hageman factor). J Biol Chem 1989; 264: 12941-12949.
  • 57 Zito F, Drummond F, Bujac SR. et al. Epidemiological and genetic associations of activated factor XII concentration with factor VII activity, fibrinopeptide A concentration, and risk of coronary heart disease in men. Circulation 2000; 102: 2058-2062.
  • 58 Kanaji T, Okamura T, Osaki K. et al. A common genetic polymorphism (46C to T substitution) in the 5’-untranslated region of the coagulation factor XII gene is associated with low translation efficiency and decrease in plasma factor XII level. Blood 1998; 91: 2010-2014.
  • 59 Calafell F, Almasy L, Sabater-Lleal M. et al. Sequence variation and genetic evolution at the human F12 locus: mapping quantitative trait nucleotides that influence FXII plasma levels. Hum Mol Genet 2010; 19: 517-525.
  • 60 Endler G, Mannhalter C, Sunder-Plassmann H. et al. Homozygosity for the C>T polymorphism at nucleotide 46 in the 5’ untranslated region of the factor XII gene protects from development of acute coronary syndrome. Br J Haematol 2001; 115: 1007-1009.
  • 61 Endler G, Marsik C, Jilma B. et al. Evidence of a U-shaped association between factor XII activity and overall survival. J Thromb Haemost 2007; 05: 1143-1148.
  • 62 Bach J, Endler G, Winkelmann BR. et al. Coagulation factor XII (FXII) activity, activated FXII, distribution of FXII C46T gene polymorphism and coronary risk. J Thromb Haemost 2008; 06: 291-296.
  • 63 Gailani D, Renné T. Intrinsic pathway of coagulation and arterial thrombosis. Arterioscler Thromb Vasc Biol 2007; 27: 2507-2513.
  • 64 Johnson CY, Tuite A, Morange PE. et al. The factor XII –4C>T variant and risk of common thrombotic disorders: A HuGE review and meta-analysis of evidence from observational studies. Am J Epidemiol 2011; 173: 136-144.
  • 65 Oguchi S, Ito D, Murata M. et al. Genotype distribution of the 46C/T polymorphism of coagulation factor XII in the Japanese population: absence of its association with ischemic cerebrovascular disease. Thromb Haemost 2000; 83: 178-179.
  • 66 Leung PY, Hurst S, Berny-Lang MA. et al. Inhibition of Factor XII-Mediated Activation of Factor XI Provides Protection Against Experimental Acute Ischemic Stroke in Mice. Transl Stroke Res 2012; 03: 381-389.
  • 67 Bertina RM, Poort SR, Vos HL. et al. The –4C-->T polymorphism in the factor XII gene (F12) and the risk of venous thrombosis. J Thromb Haemost 2005; 03: 597-599.
  • 68 Grunbacher G, Marx-Neuhold E, Pilger E. et al. The functional –4C>T polymorphism of the coagulation factor XII gene is not associated with deep venous thrombosis. J Thromb Haemost 2005; 03: 2815-2817.
  • 69 Tirado I, Soria JM, Mateo J. et al. Association after linkage analysis indicates that homozygosity for the 46C-->T polymorphism in the F12 gene is a genetic risk factor for venous thrombosis. Thromb Haemost 2004; 91: 899-904.
  • 70 Kanaji T, Watanabe K, Hattori S. et al. Factor XII gene (F12) –4C/C polymorphism in combination with low protein S activity is associated with deep vein thrombosis. Thromb Haemost 2006; 96: 854-855.
  • 71 Meade TW, Ruddock V, Stirling Y. et al. Fibrinolytic activity, clotting factors, and long-term incidence of ischaemic heart disease in the Northwick Park Heart Study. Lancet 1993; 342: 1076-1079.
  • 72 Heinrich J, Balleisen L, Schulte H. et al. Fibrinogen and factor VII in the prediction of coronary risk. Results from the PROCAM study in healthy men. Arterioscler Thromb 1994; 14: 54-59.
  • 73 Grant PJ, Humphries S. Genetic determinants of arterial thrombosis. Baillieres Best Pract Res Clin Haematol 1999; 12: 505-532.
  • 74 Bernardi F, Marchetti G, Pinotti M. et al. Factor VII gene polymorphisms contribute about one third of the factor VII level variation in plasma. Arterioscler Thromb Vasc Biol 1996; 16: 72-76.
  • 75 Campo G, Valgimigli M, Ferraresi P. et al. Tissue factor and coagulation factor VII levels during acute myocardial infarction: association with genotype and adverse events. Arterioscler Thromb Vasc Biol 2006; 26: 2800-2806.
  • 76 reviewed in Campo G, Pavasini R, Pollina A, Tebaldi M, Ferrari R. Coagulation factors and recurrence of ischemic and bleeding adverse events in patients with acute coronary syndromes. Thromb Res 2013; 132: 151-157.
  • 77 Iacoviello L, Di Castelnuovo A, De Knijff P. et al. Polymorphisms in the coagulation factor VII gene and the risk of myocardial infarction. N Engl J Med 1998; 338: 79-85.
  • 78 Girelli D, Russo C, Ferraresi P. et al. Polymorphisms in the factor VII gene and the risk of myocardial infarction in patients with coronary artery disease. N Engl J Med 2000; 343: 774-780.
  • 79 Friso S, Lotto V, Choi SW. et al. Promoter methylation in coagulation F7 gene influences plasma FVII concentrations and relates to coronary artery disease. J Med Genet 2012; 49: 192-199.
  • 80 Funk M, Endler G, Lalouschek W. et al. Factor VII gene haplotypes and risk of ischemic stroke. Clin Chem 2006; 52: 1190-1192.
  • 81 Greisenegger S, Weber M, Funk M. et al. Polymorphisms in the coagulation factor VII gene and risk of primary intracerebral hemorrhage. Eur J Neurol 2007; 14: 1098-1101.
  • 82 Monkovic DD, Tracy PB. Activation of human factor V by factor Xa and thrombin. Biochemistry 1990; 29: 1118-1128.
  • 83 Dahlbäck B, Carlsson M, Svensson PJ. Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C. Proc Natl Acad Sci USA 1993; 90: 1004-1008.
  • 84 Bertina RM, Koeleman BP, Koster T. et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994; 369: 64-67.
  • 85 Juul K, Tybjaerg-Hansen A, Steffensen R. et al. Factor V Leiden: the Copenhagen City Heart Study and 2 meta-analyses. Blood 2002; 100: 3-10.
  • 86 Wu AH, Tsongalis GJ. Correlation of polymorphisms to coagulation and biochemical risk factors for cardiovascular diseases. Am J Cardiol 2001; 87: 1361-1366.
  • 87 Rosendaal FR, Siscovick DS, Schwartz SM. et al. Factor V Leiden (resistance to activated protein C) increases the risk of myocardial infarction in young women. Blood 1997; 89: 2817-2821.
  • 88 Van de Water NS, French JK, Lund M. et al. Prevalence of factor V Leiden and prothrombin variant G20210A in patients age <50 years with no significant stenoses at angiography three to four weeks after myocardial infarction. J Am Coll Cardiol 2000; 36: 717-722.
  • 89 Lalouschek W, Schillinger M, Hsieh K. et al. Matched case–control study on factor V Leiden and the prothrombin G20210A mutation in patients with ischemic stroke/transient ischemic attack up to the age of 60 years. Stroke 2005; 36: 1405-1409.
  • 90 Bérard AM, Bedel A, Le Trequesser R. et al. Novel risk factors for premature peripheral arterial occlusive disease in non-diabetic patients: a casecontrol study. PLoS One 2013; 08: e37882.
  • 91 Compagni A, Melegaro A, Tarricone R. Genetic screening for the predisposition to venous thromboembolism: a cost-utility analysis of clinical practice in the Italian health care system. Value Health 2013; 16: 909-921.
  • 92 Poort SR, Rosendaal FR, Reitsma PH, Bertina RM. A common genetic variation in the 3’-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 1996; 88: 3698-3703.
  • 93 Franco RF, Reitsma PH. Gene polymorphisms of the haemostatic system and the risk of arterial thrombotic disease. Br J Haematol 2001; 115: 491-506.
  • 94 Ceelie H, Spaargaren-van Riel CC, Bertina RM, Vos HL. G20210A is a functional mutation in the prothrombin gene; effect on protein levels and 3’-end formation. J Thromb Haemost 2004; 02: 119-127.
  • 95 Gehring NH, Frede U, Neu-Yilik G. et al. Increased ef fi ciency of mRNA 3’ end formation: a new genetic mechanism contributing to hereditary thrombophilia. Nat Genet 2001; 28: 389-392.
  • 96 Franco RF, Trip MD, ten Cate H. et al. The 20210 G -7 A mutation in the 3’-untranslated region of the prothrombin gene and the risk for arterial thrombotic disease. Br J Haematol 1999; 104: 50-54.
  • 97 Kim RJ, Becker RC. Association between factor V Leiden, prothrombin G20210A, and methylenetetrahydrofolate reductase C677T mutations and events of the arterial circulatory system: a metaanalysis of published studies. Am Heart J 2003; 146: 948-957.
  • 98 Forte GI, Vaccarino L, Palmeri M. et al. Analysis of polymorphisms Leiden Factor V G1691A and prothrombin G20210A as risk factors for acute myocardial infarction. Biogerontology 2011; 12: 485-490.
  • 99 Saito I, Folsom AR, Brancati FL. et al. Nontraditional risk factors for coronary heart disease incidence among persons with diabetes: the Atherosclerosis Risk in Communities (ARIC) Study. Ann Intern Med 2000; 133: 81-91.
  • 100 Folsom AR, Rosamond WD, Shahar E. et al. Prospective study of markers of hemostatic function with risk of ischemic stroke. The Atherosclerosis Risk in Communities (ARIC) Study Investigators. Circulation 1999; 100: 736-742.
  • 101 Souto JC, Almasy L, Muñiz-Diaz E. et al. Functional effects of the ABO locus polymorphism on plasma levels of von Willebrand factor, factor VIII, and activated partial thromboplastin time. Arterioscler Thromb Vasc Biol 2000; 20: 2024-2028.
  • 102 Ay C, Thom K, Abu-Hamdeh F. et al. Determinants of factor VIII plasma levels in carriers of haemophilia A and in control women. Haemophilia 2010; 16: 111-117.
  • 103 Harvey PJ, Keightley AM, Lam YM. et al. A single nucleotide polymorphism at nucleotide –1793 in the von Willebrand factor (VWF) regulatory region is associated with plasma VWF:Ag levels. Br J Haematol 2000; 109: 349-353.
  • 104 Daidone V, Cattini MG, Pontara E. et al. Microsatellite (GT)(n) repeats and SNPs in the von Willebrand factor gene promoter do not influence circulating von Willebrand factor levels under normal conditions. Thromb Haemost 2009; 101: 298-304.
  • 105 Di Bitondo R, Cameron CL, Daly ME. et al. The –1185 A/G and 1051 G/A dimorphisms in the von Willebrand factor gene promoter and risk of myocardial infarction. Br J Haematol 2001; 115: 701-706.
  • 106 Klemm T, Mehnert AK, Siegemund A. et al. Impact of the Thr789Ala variant of the von Wille-brand factor levels, on ristocetin co-factor and collagen binding capacity and its association with coronary heart disease in patients with diabetes mellitus type 2. Exp Clin Endocrinol Diabetes 2005; 113: 568-572.
  • 107 Kathiresan S, Voight BF, Purcell S. et al. Genomewide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet 2009; 41: 334-341.
  • 108 Samani NJ, Erdmann J, Hall AS. et al. Genomewide association analysis of coronary artery disease. N Engl J Med 2007; 357: 443-453.
  • 109 Ikram MA, Seshadri S, Bis JC. et al. Genomewide association studies of stroke. N Engl J Med 2009; 360: 1718-1728.
  • 110 Antoni G, Oudot-Mellakh T, Dimitromanolakis A. et al. Combined analysis of three genome-wide association studies on vWF and FVIII plasma levels. BMC Med Genet 2011; 12: 102.
  • 111 van Schie MC, van Loon JE, de Maat MP, Leebeek FW. Genetic determinants of von Willebrand factor levels and activity in relation to the risk of cardiovascular disease: a review. J Thromb Haemost 2011; 09: 899-908.
  • 112 van Loon JE, Leebeek FW, Deckers JW. et al. Effect of genetic variations in syntaxin-binding protein-5 and syntaxin-2 on von Willebrand factor concentration and cardiovascular risk. Circ Cardiovasc Genet 2010; 03: 507-512.
  • 113 Ginsburg D. Identifying novel genetic determinants of hemostatic balance. J Thromb Haemost 2005; 03: 1561-1568.
  • 114 Viel KR, Machiah DK, Warren DM. et al. A sequence variation scan of the coagulation factor VIII (FVIII) structural gene and associations with plasma FVIII activity levels. Blood 2007; 109: 3713-3724.
  • 115 Shen W, Gu Y, Zhu R. et al. Copy number variations of the F8 gene are associated with venous thromboembolism. Blood Cells Mol Dis 2013; 50: 259-262.
  • 116 Aiach M, Nicaud V, Alhenc-Gelas M. et al. Complex association of protein C gene promoter polymorphism with circulating protein C levels and thrombotic risk. Arterioscler Thromb Vasc Biol 1999; 19: 1573-1576.
  • 117 Scopes D, Berg LP, Krawczak M. et al. Polymorphic variation in the human protein C (PROC) gene promoter can influence transcriptional efficiency in vitro. Blood Coagul Fibrinolysis 1995; 06: 317-321.
  • 118 Reiner AP, Carty CL, Jenny NS. et al. PROC, PROCR and PROS1 polymorphisms, plasma anticoagulant phenotypes, and risk of cardiovascular disease and mortality in older adults: the Cardiovascular Health Study. J Thromb Haemost 2008; 06: 1625-1632.
  • 119 Oudot-Mellakh T, Cohen W, Germain M. et al. Genome wide association study for plasma levels of natural anticoagulant inhibitors and protein C anticoagulant pathway: the MARTHA project. Br J Haematol 2012; 157: 230-239.
  • 120 Medina P, Navarro S, Corral J. et al. Endothelial protein C receptor polymorphisms and risk of myocardial infarction. Haematologica 2008; 93: 1358-1363.
  • 121 Saposnik B, Reny JL, Gaussem P. et al. A haplotype of the EPCR gene is associated with increased plasma levels of sEPCR and is a candidate risk factor for thrombosis. Blood 2004; 103: 1311-1318.
  • 122 Ireland H, Konstantoulas CJ, Cooper JA. et al. EPCR Ser219Gly: elevated sEPCR, prothrombin F1+2, risk for coronary heart disease, and increased sEPCR shedding in vitro. Atherosclerosis 2005; 183: 283-292.
  • 123 Kallel C, Cohen W, Saut N. et al. Association of soluble endothelial protein C receptor plasma levels and PROCR rs867186 with cardiovascular risk factors and cardiovascular events in coronary artery disease patients: the Athero Gene study. BMC Med Genet 2012; 13: 103.
  • 124 Davi G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med 2007; 357: 2482-2494.
  • 125 Nurden AT. Polymorphisms of human platelet membrane glycoproteins: structure and clinical significance. Thromb Haemost 1995; 74: 345-351.
  • 126 Kunicki TJ. The influence of platelet collagen receptor polymorphisms in hemostasis and thrombotic disease. Arterioscler Thromb Vasc Biol 2002; 22: 14-20.
  • 127 Lewandowski K, Swierczyñska A, Kwaœnikowski P. et al. The prevalence of C807T mutation of glycoprotein Ia gene among young male survivors of myocardial infarction: a relation with coronary angiography results. Kardiol Pol 2005; 63: 107-113.
  • 128 Wang Y, Fu W, Xie F. et al. Common polymorphisms in ITGA2, PON1 and THBS2 are associated with coronary atherosclerosis in a candidate gene association study of the Chinese Han population. J Hum Genet 2010; 55: 490-494.
  • 129 Zhao YH, Xu Y, Gu YY. et al. Functional effect of platelet membrane glycoprotein Ia gene polymorphism in the pathogenesis of unstable angina pectoris. J Int Med Res 2011; 39: 541-548.
  • 130 Pellitero S, Reverter JL, Tàssies D. et al. Polymorphisms in platelet glycoproteins Ia and IIIa are associated with arterial thrombosis and carotid atherosclerosis in type 2 diabetes. Thromb Haemost 2010; 103: 630-637.
  • 131 Lopaciuk S, Bykowska K, Kwiecinski H. et al. Factor V Leiden, prothrombin gene G20210A variant, and methylenetetrahydrofolate reductase C677T genotype in young adults with ischemic stroke. Clin Appl Thromb Hemost 2001; 07: 346-350.
  • 132 Xin XY, Song YY, Ma JF. et al. Gene polymorphisms and risk of adult early-onset ischemic stroke: A meta-analysis. Thromb Res 2009; 124: 619-624.
  • 133 McEver RP, Martin MN. A monoclonal antibody to a membrane glycoprotein binds only to activated platelets. J Biol Chem 1984; 259: 9799-9804.
  • 134 Hsu-Lin S, Berman CL, Furie BC. et al. A platelet membrane protein expressed during platelet activation and secretion. Studies using a monoclonal antibody specific for thrombin-activated platelets. J Biol Chem 1984; 259: 9121-9126.
  • 135 Stenberg PE, McEver RP, Shuman MA. et al. A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J Cell Biol 1985; 101: 880-886.
  • 136 Berman CL, Yeo EL, Wencel-Drake JD. et al. A platelet alpha granule membrane protein that is associated with the plasma membrane after activation. Characterization and subcellular localization of platelet activation-dependent granule-external membrane protein. J Clin Invest 1986; 78: 130-7.
  • 137 Katayama M, Handa M, Araki Y. et al. Soluble P-selectin is present in normal circulation and its plasma level is elevated in patients with thrombotic thrombocytopenic purpura and haemolytic uraemic syndrome. Br J Haematol 1993; 84: 702-710.
  • 138 Chong BH, Murray B, Berndt MC. et al. Plasma P-selectin is increased in thrombotic consumptive platelet disorders. Blood 1994; 83: 1535-1541.
  • 139 Ridker PM, Buring JE, Rifai N. Soluble P-selectin and the risk of future cardiovascular events. Circulation 2001; 103: 491-495.
  • 140 Mayadas TN, Johnson RC, Rayburn H. et al. Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice. Cell 1993; 74: 541-554.
  • 141 Gremmel T, Kopp CW, Steiner S. et al. The P-selectin gene Pro715 allele and low levels of soluble P-selectin are associated with reduced P2Y12 adenosine diphosphate receptor reactivity in clopidogrel-treated patients. Atherosclerosis 2011; 217: 135-138.
  • 142 Subramanian H, Gambaryan S, Panzer S. et al. The Thr715Pro variant impairs terminal glycosylation of P-selectin. Thromb Haemost 2012; 108: 963-972.
  • 143 Kee F, Morrison C, Evans AE. et al. Polymorphisms of the P-selectin gene and risk of myocardial infarction in men and women in the ECTIM extension study. Etude cas-temoin de l’infarctus myocarde. Heart 2000; 84: 548-552.
  • 144 Tregouet DA, Barbaux S, Escolano S. et al. Specific haplotypes of the P-selectin gene are associated with myocardial infarction. Hum Mol Genet 2002; 11: 2015-2023.
  • 145 Bugert P, Vosberg M, Entelmann M. et al. Polymorphisms in the P-selectin (CD62P) and P-selectin glycoprotein ligand-1 (PSGL-1) genes and coronary heart disease. Clin Chem Lab Med 2004; 42: 997-1004.
  • 146 Volcik KA, Ballantyne CM, Coresh J. et al. P-selectin Thr715Pro polymorphism predicts P-selectin levels but not risk of incident coronary heart disease or ischemic stroke in a cohort of 14595 participants: the Atherosclerosis Risk in Communities Study. Atherosclerosis 2006; 186: 74-79.
  • 147 Volcik KA, Ballantyne CM, Coresh J. et al. Specific P-selectin and P-selectin glycoprotein ligand-1 genotypes/haplotypes are associated with risk of incident CHD and ischemic stroke: the Atherosclerosis Risk in Communities (ARIC) study. Atherosclerosis 2007; 195: e76-e82.
  • 148 Wei YS, Lan Y, Huang RY. et al. Association of the single-nucleotide polymorphism and haplotype of the P-selectin gene with ischemic stroke. J Thromb Thrombolysis 2009; 27: 75-81.
  • 149 Ferrari J, Rieger S, Endler G. et al. The Thr715Pro polymorphism of the P-selectin gene is not associated with ischemic stroke risk. Stroke 2007; 38: 395-397.
  • 150 Ghasemzadeh M, Hosseini E. Platelet-leukocyte crosstalk: Linking proinflammatory responses to procoagulant state. Thromb Res 2013; 131: 191-197.
  • 151 Vaiman D, Gascoin-Lachambre G, Boubred F. et al. The intensity of IUGR-induced transcriptome deregulations is inversely correlated with the onset of organ function in a rat model. PLoS One 2011; 06: e21222.
  • 152 Launay JM, Del Pino M, Chironi G. et al. Smoking induces long-lasting effects through a monoamine-oxidase epigenetic regulation. PLoS One 2009; 04: e7959.
  • 153 Freson K, Izzi B, Van Geet C. From genetics to epigenetics in platelet research. Thromb Res 2012; 129: 325-329.
  • 154 Friso S, Lotto V, Choi SW. et al. Promoter methylation in coagulation F7 gene influences plasma FVII concentrations and relates to coronary artery disease. J Med Genet 2012; 49: 192-199.