Ultraschall Med 2020; 41(03): 292-299
DOI: 10.1055/a-0654-4824
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Cardiovascular Hemodynamic Changes After Antenatal Corticosteroids in Growth Restricted and Appropriate for Gestational Age Fetuses

Kardiovaskuläre hämodynamische Veränderungen nach antenatalen Kortikosteroiden bei Feten mit intrauteriner Wachstumsretardierung und bei zeitgerecht entwickelten Feten
Laura Marchi
1   Department for Women and Child Health, Azienda Ospedaliera Universitaria Careggi, Firenze, Italy
,
Lucia Pasquini
1   Department for Women and Child Health, Azienda Ospedaliera Universitaria Careggi, Firenze, Italy
,
Ayten Elvan-Taspinar
2   Department of Obstetrics, University Medical Center Groningen, University of Groningen, Netherlands
,
Caterina Maddalena Bilardo
3   Department of Obstetrics, Vrije Universiteit Amsterdam, Netherlands
› Author Affiliations
Further Information

Publication History

08 January 2018

26 June 2018

Publication Date:
26 October 2018 (online)

Abstract

Purpose To investigate hemodynamic effects after antenatal corticosteroids (ACS) administration in appropriate for gestational age (AGA) and early growth restricted (GR) fetuses by measurement of Doppler cardiovascular function parameters.

Materials and Methods Prospective cohort study. AGA and GR singleton pregnancies receiving ACS for fetal lung maturation between 24 + 0–33 + 6 weeks were enrolled. Feto-placental vascular hemodynamics were studied by: umbilical artery (UA) pulsatility index (PI), middle cerebral artery (MCA) PI, renal artery (RenA) PI. Cardiac function was evaluated by ductus venosus (DV) PI and by echocardiographic parameters: E to A wave ratios (E/A) and mitral and tricuspid annular plane systolic excursion (MAPSE and TAPSE) for diastolic function, left and right myocardial performance index (MPI) for overall (diastolic and systolic) function. A single operator performed all the measurements at 3 different time points (E): E0 before or within 4 hours of ACS administration (baseline examination), E1 24–48 hours after the first dose and E2 7 days after the second dose of ACS. The values were expressed as z-scores. Pairwise comparisons with paired t-test were performed to compare measurements before and after exposure to ACS.

Results 25 AGA and 20 GR fetuses (mean gestational age: 31 + 1 and 30 + 6, respectively) were included in the analysis. In the AGA group ACS administration was associated with a significant reduction in UA PI. In the GR fetuses ACS temporarily (E0-E1) restored UA-end diastolic flow (EDF) in 6 of 9 fetuses with A/R-EDF (“Return of EDF phenomenon”) and produced a significant increase (worsening) in right MPI (both in E1-E2 and in E0-E2).

Conclusion ACS administration is associated with UA vasodilation in both AGA and GR fetuses and with an increase in right MPI in the latter group. This suggests a worsening in cardiac function in GR fetuses.

Zusammenfassung

Ziel Untersuchung der hämodynamischen Effekte nach Verabreichung von antenatalen Kortikosteroiden (ACS) in bei zeitgerecht entwickelten AGA-Feten („appropriate for gestational age“) und bei Feten mit früher intrauteriner Wachstumsretardierung (GR) durch Messung von kardiovaskulären Funktionsparametern in der Dopplersonografie.

Material und Methoden In die prospektive Kohortenstudie wurden AGA- und GR-Einlings-Schwangerschaften von SSW 24 + 0 bis 33 + 6 eingeschlossen, die ACS für die fetale Lungenreifung erhielten. Die Untersuchung der fetoplazentaren vaskulären Hämodynamik erfolgte durch: Pulsatilitätsindindizes (PI) der A. umbilicalis (UA), der A. cerebri media (MCA) und der Nierenarterie (RenA). Die Herzfunktion wurde durch den PI des Ductus venosus (DV) und durch echokardiografische Parameter ausgewertet: Ratio von E- zu A-Welle (E/A) und die „Mitral and Tricuspid Annular Plane Systolic Excursion“ (MAPSE und TAPSE) für die diastolische Funktion, linker und rechter „Myocard Performance Index“ (MPI) für die Gesamtfunktion (diastolisch und systolisch). Ein einzelner Untersucher führte alle Messungen zu drei verschiedenen Zeitpunkten (E) durch: E0 vor oder innerhalb von 4 Stunden nach ACS-Gabe (Basisuntersuchung), E1 24–48 Stunden nach der ersten Dosis und E2 sieben Tage nach der zweiten ACS-Dosis. Die Werte wurden als Z-Scores angegeben. Paarweise Vergleiche erfolgten mittels gepaarten t-Test, um Messungen vor und nach ACS-Exposition zu vergleichen.

Ergebnisse 25 AGA- und 20 GR-Feten (mittlere SSW 31 + 1 bzw. 30 + 6) wurden in die Analyse einbezogen. In der AGA-Gruppe war die ACS-Gabe mit einer signifikanten Reduktion des UA PI assoziiert. Bei GR-Feten stellte ACS bei 6 von 9 Feten mit A/R-EDF („Return of EDF-Phänomen“) den UA-end diastolischen Fluss vorübergehend (E0-E1) wieder her (EDF) und führte zu einer signifikanten Erhöhung (Verschlechterung) des rechten MPI (sowohl bei E1-E2 als auch bei E0-E2).

Schlussfolgerung Eine ACS-Gabe ist sowohl bei AGA- als auch bei GR-Feten mit einer UA-Vasodilatation assoziiert, und bei Letzteren auch mit einem Anstieg des rechten MPI. Dies deutet auf eine Verschlechterung der Herzfunktion bei GR-Feten hin.

 
  • References

  • 1 Roberts D, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth (Review). The Cochrane Collaboration, The Cochrane Library; 2006 Issue 3
  • 2 Mulder EJH, de Heus R, Visser GHA. Antenatal corticosteroid therapy: short term effects on fetal behaviour and hemodynamics. Seminars in Fetal & Neonatal Medicine 2009; 14: 151-156
  • 3 Vidaeff AC, Blackwell SC. Potential risks and benefits of antenatal corticosteroid therapy prior to preterm birth in pregnancies complicated by severe fetal growth restriction. Obstet Gynecol Clin N Am 2011; 38: 205-2014
  • 4 Verburg BO, Jaddoe VWV, Wladimiroff JW. et al. Fetal hemodynamic adaptative changes related to intrauterine growth- The generation R study. Circulation 2008; 117: 649-659
  • 5 Hodges RJ, Wallace EM. Mending a growth-restricted heart: should we use glucocorticoids?. The Journal of Maternal-Fetal and Neonatal Medicine 2012; 25: 2149-2153
  • 6 Torrance HL, Derks JB, Scherjon SA. et al. Is antenatal steroid treatment effective in preterm IUGR fetuses?. Acta Obstetricia et Gynecologica 2009; 88: 1068-1073
  • 7 Van Meighem T, Hodges R, Jaeggi E. et al. Functional echocardiography in the fetus with non-cardiac disease. Prenatal Diagnosis 2014; 34: 23-32
  • 8 Kahler C, Schleussner E, Müller A. et al. Doppler measurements in fetoplacental vessels after maternal betamethasone administration. Fetal Diagnosis and Therapy 2004; 19: 52-57
  • 9 Pedersen LH, Mogra R, Hyett J. The effects of corticosteroids on cardiac function in growth restricted fetuses. 2015; DOI: 10.1002/uog.15748.
  • 10 ACOG Practice Bullettin, Number 134, May 2013.
  • 11 Parra-Cordero M, Lees C, Missfelder-Lobos H. et al. Fetal arterial and venous Doppler pulsatility index and time averaged velocity ranges. Prenat Diagn 2007; 27: 1251-1257
  • 12 Baschat AA, Gembruch U. The cerebroplacental Doppler ratio revisited. Ultrasound Obstet Gynecol 2003; 21: 124-127
  • 13 Mari G, Abuhamad AZ, Uerpairojkit B. et al. Blood flow velocity waveforms of abdominal arteries in appropriate and small for gestational age fetuses. Ultrasound Obstet Gynecol 1995; 6: 15-18
  • 14 Hernandez-Andrade E, Benavides-Serralde JA, Cruz-Martinez R. et al. Evaluation of conventional Doppler fetal cardiac function parameters: E/A ratios, outflow tracts, and myocardial performance index. Fetal Diagn Ther 2012; 32: 22-29
  • 15 Messing B, Gilboa Y, Lipschuetz M. et al. Fetal tricuspid annular plane systolic excursion (f-TAPSE):evaluation of fetal right heart systolic function with conventional M-mode ultrasound and spatiotemporal image correlation (STIC) M-mode. Ultrasound Obstet Gynecol 2013; 42: 182-188
  • 16 Hernandez-Andrade E, Lopez-Tenorio J, Figueroa-Diesel H. et al. A modified myocardial performance (Tei) index based on the use of valve clicks improves reproducibility of fetal left cardiac function assessment. Ultrasound Obstet Gynecol 2005; 26: 227-232
  • 17 Crispi F, Gratacos E. Fetal Cardiac Function: Technical Considerations and Potential Research and Clinical Applications. Fetal Diagn Ther 2012; 32: 47-64
  • 18 Lobmaier SM, Cruz-Lemini M, Valenzuela-Alcaraz B. et al. Influence of equipment and settings on myocardial performance index repeatability and definition of settings to achieve optimal reproducibility. Ultrasound Obstet Gynecol 2014; 43: 632-639
  • 19 Edwards A, Baker LS, Wallace EM. Changes in feto-placental vessel flow velocity waveforms following maternal administration of betamethasone. Ultrasound Obstet Gynecol 2002; 20: 240-244
  • 20 Parasuraman R, Osmond C, Howe DT. Gestation-specific reference intervals for fetal cardiac Doppler indices from 12 to 40 weeks of gestation. Open Journal of Obstetrics and Gynecology 2013; 3: 97-104
  • 21 Gardiner HM, Pasquini L, Wolfenden J. et al. Myocardial tissue Doppler and long axis function in the fetal heart. Int J Cardiol 2006; 113: 39-47
  • 22 Baud O, Sola A. Corticosteroids in perinatal medicine: How to improve outcomes without affecting the developing brain?. Seminars in Fetal & Neonatal Medicine 2007; 12: 273-279
  • 23 Clifton VL, Wallace EM, Smith R. Short-term effects of glucocorticosteroids in the human fetal-placental circulation in vitro. J Clin Endocrinol Metab 2002; 87: 2838-2842
  • 24 Potter SM, Dennedy MC, Morrison JJ. Corticosteroids and fetal vasculature: effects of hydrocortisone, dexamethasone and betamethasone on human umbilical artery. BJOG 2002; 109: 1126-1131
  • 25 Schwab M, Roedel M, Anwar MA. et al. Effects of betamethasone administration to the fetal sheep in late gestation on fetal cerebral blood flow. J Physiol 2000; 528: 619-632
  • 26 Koenen SV, Mecenas CA, Smith GS. et al. Effects of maternal betamethasone administration on fetal and maternal blood pressure and heart rate in the baboon at 0.7 of gestation. Am J Obstet Gynecol 2002; 186: 812-817
  • 27 Miller LS, Chai M, Loose J. et al. The effects of maternal betamethasone administration on the intrauterine growth-restricted fetus. Endocrinology 2007; 148: 1288-1295
  • 28 Miller SL, Supramaniam VG, Jenkin G. et al. Cardiovascular responses to maternal betamethasone administration in the intrauterine growth-restricted ovine fetus. AJOG 2009; 201: 1-8
  • 29 Chang YL, Chang SD, Chao AS. et al. Fetal hemodynamic changes following maternal betamethasone administration in monochorionic twin pregnancies featuring one twin with selective growth restriction and abnormal umbilical artery Doppler. J Obstet Gynaecol Res 2011; 37: 1671-1676
  • 30 Chitrit Y, Caubel P, Herrero R. et al. Effects of maternal dexamethasone administration on fetal Doppler flow velocity waveforms. BJOG 2000; 107: 501-507
  • 31 Moïse AA, Wearden ME, Kozinetz CA. et al. Antenatal steroids are associated with less need for blood pressure support in extremely premature infants. Pediatrics 1995; 95: 845-859
  • 32 Saif Z, Hodyl NA, Hobbs E. et al. The human placenta expresses multiple glucocorticoid receptor isoforms that are altered by fetal sex, growth restriction and maternal asthma. Placenta 2014; 35: 260-268
  • 33 Cohlen BJ, Stigter RH, Derks JB. et al. Absence of significant hemodynamic changes in the fetus following maternal betamethasone administration. Ultrasound Obstet Gynecol 1996; 8: 252-255
  • 34 Wallace EM, Baker L. Effect of antenatal betamethasone administration on placental vascular resistance. The Lancet 1999; 353: 1404-1407
  • 35 Müller T, Nanan R, Dietl J. Effect of antenatal corticosteroid administration on Doppler flow velocity parameters in pregnancies with absent or reverse end-diastolic flow in the umbilical artery. Acta Obstet Gynecol Scand 2003; 82: 794-796
  • 36 Simchen MJ, Alkazaleh F, Adamson SL. et al. The fetal cardiovascular response to antenatal steroids in severe early-onset intrauterine growth restriction. AJOG 2004; 190: 296-304
  • 37 Wijnberger LD, Bilardo CM, Hecher K. et al. Effect of antenatal glucocorticoid therapy on arterial and venous blood flow velocity waveforms in severely growth-restricted fetuses. Ultrasound Obstet Gynecol 2004; 23: 584-589
  • 38 Nozaki AM, Francisco RP, Fonseca ES. et al. Fetal hemodynamic changes following maternal betamethasone administration in pregnancies with fetal growth restriction and absent end-diastolic flow in the umbilical artery. Acta Obstetricia et Gynecologica 2009; 88: 350-354
  • 39 Thuring A, Malcus P, Maršál K. Effect of maternal betamethasone on fetal and uteroplacental blood flow velocity waveforms. Ultrasound Obstet Gynecol 2011; 37: 668-672
  • 40 Piazze J, Dillon KC, Cerekja A. Betamethasone effects on umbilical arteries and ductus venosus Doppler velocity waveforms in growth-restricted fetuses. J Matern Fetal Neonatal Med 2012; 25: 1179-1182
  • 41 Lee Adamson S. Arterial pressure, vascular input impedance and resistance as determinants of pulsatile flow in the umbilical artery. European Journal of Obstetrics and Gynecology and Reproductive Biology 1999; 84: 119-125
  • 42 Tare M, Miller SL, Wallace EM. et al. Glucocorticoid treatment does not alter early cardiac adaptations to growth restriction in preterm sheep fetuses. BJOG 2012; 119: 906-914
  • 43 Crispi F, Hernandez-Andrade E, Pelsers MMAL. et al. Cardiac dysfunction and cell damage across clinical stages of severity in growth restricted fetuses. Am J Obstet Gynecol 2008; 199: 254.e1-254.e8
  • 44 Sikkel E, Klumper FJCM, Oepkes D. et al. Fetal cardiac contractility before and after intrauterine transfusion. Ultrasound Obstet Gynecol 2005; 26: 611-617
  • 45 Grzesiak M, Wilczynski J. Preliminary report of 48-hours Atosiban administration in spontaneous preterm labour- Doppler blood flow assessment of placental and fetal circulation. Neuro Endocrinol Lett 2013; 34: 681-686
  • 46 Günenc H, Cicek N, Gorkemli H. et al. The effect of methyldopa treatment on uterine, umbilical and middle cerebral artery blood flow in pre-eclamptic patients. Arch Gynecol Obstet 2002; 266: 141-144