RSS-Feed abonnieren
DOI: 10.1055/a-2600-4373
Methoden der Energieverbrauchsmessung: Von den Grundlagen zur klinischen Anwendung und personalisierten Adipositastherapie
Methods of Energy Expenditure Measurement: From Basics to Clinical Application and Personalized Obesity TherapyAutoren
Zusammenfassung
Ziel der Studie
Der Artikel gibt einen Überblick über Methoden zur Energieverbrauchsmessung als Basis für eine personalisierte Adipositastherapie, da pauschale Empfehlungen aufgrund der hohen individuellen Stoffwechselvariabilität oft scheitern.
Methodik
Es werden die Komponenten des Energieverbrauchs (Ruheenergieverbrauch (REE), nahrungsinduzierte Thermogenese (DIT), Aktivitätsenergieverbrauch (AEE)) sowie verschiedene Messmethoden kritisch verglichen: von Forschungs-Goldstandards (Stoffwechselkammer, doppeltmarkiertes Wasser (DLW)) bis hin zu klinischen Verfahren (Haubenkalorimetrie, Formeln, Bioelektrische Impedanzanalyse (BIA)). Zudem wird die Identifizierung von Stoffwechseltypen („sparsam“ vs. „verschwenderisch“) mittels funktioneller Tests erläutert.
Ergebnisse
Die indirekte Haubenkalorimetrie ist der klinische Goldstandard zur REE-Messung und Schätzformeln oder BIA weit überlegen. Die Existenz „sparsamer“ Stoffwechseltypen mit starker metabolischer Anpassung ist klinisch relevant und kann durch funktionelle Tests prädiktiv für den Abnehmerfolg identifiziert werden. Aktuelle Wearables sind für den klinischen Einsatz noch zu ungenau.
Schlussfolgerung
Die präzise Messung des Ruheenergieverbrauchs ist der Schätzung durch Formeln oder Wearables noch fundamental überlegen. Die Anerkennung individueller metabolischer Unterschiede ist entscheidend, um Therapieziele zu personalisieren und den Weg zu einer wirksamen, datengestützten Adipositasbehandlung zu ebnen.
Abstract
Study goals
This article reviews methods for measuring energy expenditure as a foundation for personalized obesity therapy, since one-size-fits-all recommendations often fail due to high individual metabolic variability.
Method
The components of energy expenditure (resting energy expenditure [REE], diet-induced thermogenesis [DIT], activity-related energy expenditure [AEE]) are critically compared across measurement techniques: from research gold standards (metabolic chamber, doubly labeled water [DLW]) to clinical approaches (indirect calorimetry, predictive equations, bioelectrical impedance analysis [BIA]). The identification of metabolic phenotypes (“thrifty” vs. “spendthrift”) via functional tests is also described.
Results
Indirect calorimetry is the clinical gold standard for REE measurement and is shown to vastly outperform predictive equations or BIA. The presence of “thrifty” phenotypes, characterized by strong metabolic adaptation, is deemed clinically relevant and can be predicted by functional testing for weight-loss success. Current wearable devices are found to be insufficiently precise for clinical application.
Conclusion
Precise measurement of resting energy expenditure is fundamentally superior to estimation via predictive equations or wearable devices. Recognition of individual metabolic differences is essential for personalizing therapeutic targets and paving the way to effective, data-driven obesity treatment.
Publikationsverlauf
Artikel online veröffentlicht:
02. Dezember 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Atwater WO, Rosa EB. A New Respiration Calorimeter and Experiments on the Conservation of Energy in the Human Body, II. Physical Review (Series I) 1899; 9: 214-251
- 2 Donahoo WT, Levine JA, Melanson EL. Variability in energy expenditure and its components. Curr Opin Clin Nutr Metab Care 2004; 7: 599-605
- 3 Reed GW, Hill JO. Measuring the thermic effect of food. Am J Clin Nutr 1996; 63: 164-169
- 4 Levine JA. Nonexercise activity thermogenesis (NEAT): environment and biology. Am J Physiol Endocrinol Metab 2004; 286: E675-685
- 5 Levine JA, Vander Weg MW, Hill JO. et al. Non-exercise activity thermogenesis: the crouching tiger hidden dragon of societal weight gain. Arterioscler Thromb Vasc Biol 2006; 26: 729-736
- 6 Delsoglio M, Achamrah N, Berger MM. et al. Indirect Calorimetry in Clinical Practice. J Clin Med. 2019; 8: 9
- 7 Weir JB. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 1949; 109: 1-9
- 8 Weyer C, Vozarova B, Ravussin E. et al. Changes in energy metabolism in response to 48 h of overfeeding and fasting in Caucasians and Pima Indians. Int J Obes Relat Metab Disord 2001; 25: 593-600
- 9 Westerterp KR. Doubly labelled water assessment of energy expenditure: principle, practice, and promise. Eur J Appl Physiol 2017; 117: 1277-1285
- 10 Black AE, Coward WA, Cole TJ. et al. Human energy expenditure in affluent societies: an analysis of 574 doubly-labelled water measurements. Eur J Clin Nutr 1996; 50: 72-92
- 11 McGrosky A, Luke A, Arab L. et al. Energy expenditure and obesity across the economic spectrum. Proceedings of the National Academy of Sciences 2025; 122: e2420902122
- 12 Van Hooren B, Souren T, Bongers BC. Accuracy of respiratory gas variables, substrate, and energy use from 15 CPET systems during simulated and human exercise. Scand J Med Sci Sports 2024; 34: e14490
- 13 Haugen HA, Melanson EL, Tran ZV. et al. Variability of measured resting metabolic rate. Am J Clin Nutr 2003; 78: 1141-1145
- 14 Harris JA, Benedict FG. A Biometric Study of Human Basal Metabolism. Proc Natl Acad Sci U S A 1918; 4: 370-373
- 15 Mifflin MD, St Jeor ST, Hill LA. et al. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr 1990; 51: 241-247
- 16 Frankenfield D, Roth-Yousey L, Compher C. Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: a systematic review. J Am Diet Assoc 2005; 105: 775-789
- 17 Thom G, Gerasimidis K, Rizou E. et al. Validity of predictive equations to estimate RMR in females with varying BMI. J Nutr Sci 2020; 9: e17
- 18 Karagun B, Baklaci N. Comparative analysis of basal metabolic rate measurement methods in overweight and obese individuals: A retrospective study. Medicine (Baltimore) 2024; 103: e39542
- 19 Leibel RL, Rosenbaum M, Hirsch J. Changes in energy expenditure resulting from altered body weight. New England Journal of Medicine 1995; 332: 621-628
- 20 Hollstein T, Piaggi P. How can we assess “thrifty” and “spendthrift” phenotypes?. Curr Opin Clin Nutr Metab Care 2023; 26: 409-416
- 21 Doherty C, Baldwin M, Keogh A. et al. Keeping Pace with Wearables: A Living Umbrella Review of Systematic Reviews Evaluating the Accuracy of Consumer Wearable Technologies in Health Measurement. Sports Med 2024; 54: 2907-2926
- 22 Uphill A, Kendall KL, Fogarty A. et al. Validity of Apple Watch, Garmin Forerunner(®) 935 and GENEActiv for estimating energy expenditure during close quarter battle training in Special Forces soldiers. Eur J Sport Sci 2024; 24: 614-622
- 23 Kang M, Choe J-P. Study Examines How Well Wearable Tech Tracks Fitness Metrics. 2025 2025. Weblink https://olemiss.edu/news/2025/06/apple-watch-accuracy-study/index.html Zugriff am 02.08.2025.
- 24 Chevance G, Golaszewski NM, Tipton E. et al. Accuracy and Precision of Energy Expenditure, Heart Rate, and Steps Measured by Combined-Sensing Fitbits Against Reference Measures: Systematic Review and Meta-analysis. JMIR Mhealth Uhealth 2022; 10: e35626
- 25 Koehler K, Drenowatz C. Monitoring Energy Expenditure Using a Multi-Sensor Device-Applications and Limitations of the SenseWear Armband in Athletic Populations. Front Physiol 2017; 8: 983
- 26 O&Driscoll R, Turicchi J, Beaulieu K. et al. How well do activity monitors estimate energy expenditure? A systematic review and meta-analysis of the validity of current technologies. Br J Sports Med 2020; 54: 332-340
