RSS-Feed abonnieren
DOI: 10.1055/a-2602-8756
Biosampling in der Adipositasforschung: Herausforderungen, Innovationen und translationale Potenziale
Biosampling in Obesity Research: Challenges, Innovations, and Translational PotentialsAutoren
Zusammenfassung
Adipositas stellt eine chronische, multifaktorielle Erkrankung dar, deren Entstehung durch ein komplexes Zusammenspiel genetischer, epigenetischer, verhaltensbezogener und umweltbedingter Faktoren geprägt ist. Zum besseren Verständnis der Erkrankung und zur Entwicklung effektiver Präventions- und Therapieansätze bedarf es integrativer Studiendesigns und eines standardisierten Biosamplings. Blutbasierte Proben ermöglichen genetische, epigenetische und metabolomische Analysen, während Fettgewebe insbesondere für transkriptomische und zukünftig auch räumliche Gewebeanalysen genutzt wird. Nicht-invasiv zugängliche Proben wie Stuhl und Urin geben Einblicke in die Mikrobiom- und Darmbarriereforschung. Fortschritte in der Multi-Omiks-Analytik eröffnen neue Perspektiven für eine individualisierte Adipositasforschung. Die langfristige Nutzbarkeit von Proben und Daten sowie ethische Aspekte wie Broad Consent sind dabei essenziell. Zentrale Herausforderungen bleiben allerdings die hohe Heterogenität der Erkrankung und der Bedarf an standardisierten, patient*innenzentrierten Forschungsinfrastrukturen.
Abstract
Obesity is a chronic, multifactorial disease whose development is characterized by a complex interplay of genetic, epigenetic, behavioral, and environmental factors. Integrative study designs and standardized biosampling are needed to better understand the disease and develop effective prevention and treatment approaches. Blood-based samples enable genetic, epigenetic, and metabolomic analyses, while adipose tissue is used in particular for transcriptomic and, in the future, spatial tissue analyses. Non-invasively accessible samples such as stool and urine provide insights into microbiome and intestinal barrier research. Advances in multi-omics analytics are opening up new perspectives for individualized obesity research. The long-term usability of samples and data, as well as ethical aspects such as broad consent, are essential in this context. However, key challenges remain such as the high heterogeneity of the disease and the need for standardized, patient-centered research infrastructures.
Schlüsselwörter
Adipositas - Studiendesign - Bioprobenahme - Biobanken - Genetik - Epigenetik - Blut - FettgewebeKeywords
Obesity - study design - biosampling - biobanking - genetics - epigenetics - blood - adipose tissuePublikationsverlauf
Artikel online veröffentlicht:
02. Dezember 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 World-Health-Organization (WHO). Noncommunicable diseases progress monitor. 2017
- 2 Fontaine KR, Redden DT, Wang C. et al. Years of life lost due to obesity. JAMA 2003; 289: 187-193
- 3 Whitlock G, Lewington S, Sherliker P. et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet 2009; 373: 1083-1096
- 4 Bray GA, Kim KK, Wilding JPH. World Obesity. Obesity: a chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes Rev 2017; 18: 715-723
- 5 World-Health-Organization (WHO). Obesity and overweight. 2016
- 6 Bluher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol 2019; 15: 288-298
- 7 Keller M, Svensson SIA, Rohde-Zimmermann K. et al. Genetics and Epigenetics in Obesity: What Do We Know so Far?. Curr Obes Rep 2023; 12: 482-501
- 8 Thiese MS. Observational and interventional study design types; an overview. Biochem Med (Zagreb) 2014; 24: 199-210
- 9 Mulder R, Singh AB, Hamilton A. et al. The limitations of using randomised controlled trials as a basis for developing treatment guidelines. Evid Based Ment Health 2018; 21: 4-6
- 10 Vorland CJ, Brown AW, Dawson JA. et al. Errors in the implementation, analysis, and reporting of randomization within obesity and nutrition research: a guide to their avoidance. Int J Obes (Lond) 2021; 45: 2335-2346
- 11 Zeevi D, Korem T, Zmora N. et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015; 163: 1079-1094
- 12 Bundesärztekammer. WMA Deklaration von Helsinki – Ethische Grundsätze für die medizinische Forschung am Menschen. (WMA-Generalversammlung im Oktober 2013, 2013).
- 13 Wiertz S. Die zeitliche Dimension des Broad Consent. Ethik in der Medizin 2022; 34: 645-667
- 14 Freese J, Feller S, Harttig U. et al. Development and evaluation of a short 24-h food list as part of a blended dietary assessment strategy in large-scale cohort studies. Eur J Clin Nutr 2014; 68: 324-329
- 15 Stunkard AJ, Messick S. The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. J Psychosom Res 1985; 29: 71-83
- 16 Son JW, Han BD, Bennett JP. et al. Development and clinical application of bioelectrical impedance analysis method for body composition assessment. Obes Rev 2025; 26: e13844
- 17 Goodpaster BH, Bergman BC, Brennan AM. et al. Intermuscular adipose tissue in metabolic disease. Nat Rev Endocrinol 2023; 19: 285-298
- 18 Nimptsch K, Konigorski S, Pischon T. et al. Diagnosis of obesity and use of obesity biomarkers in science and clinical medicine. Metabolism 2019; 92: 61-70
- 19 Perseghin G. Pathogenesis of obesity and diabetes mellitus: insights provided by indirect calorimetry in humans. Acta Diabetol 2011; 38: 7-21
- 20 Vaught J, Ellervik C. Preanalytical Variables Affecting the Integrity of Human Biospecimens in Biobanking. Clinical Chemistry 2015; 61: 914-934
- 21 Weber B, Welz W, Schaible I. et al. Influence of hemolysis, lipemia and bilirubin on biobank sample quality- origin and interference in the use for extracellular vesicle (EV) and MiRNA analyses. Eur J Trauma Emerg Surg 2025; 51: 153
- 22 Schleinitz D, Krause K, Wohland T. et al. Identification of distinct transcriptome signatures of human adipose tissue from fifteen depots. Eur J Hum Genet 2020; 28: 1714-1725
- 23 Kirwan JA, Brennan L, Broadhurst D. et al. Preanalytical Processing and Biobanking Procedures of Biological Samples for Metabolomics Research: A White Paper, Community Perspective (for “Precision Medicine and Pharmacometabolomics Task Group” – The Metabolomics Society Initiative). Clin Chem 2018; 64: 1158-1182
- 24 Shabihkhani M, Lucey GM, Wei B. et al. The procurement, storage, and quality assurance of frozen blood and tissue biospecimens in pathology, biorepository, and biobank settings. Clinical Biochemistry 2014; 47: 258-266
- 25 Salfer B, Havo D, Kuppinger S. et al. Evaluating Pre-Analytical Variables for Saliva Cell-Free DNA Liquid Biopsy. Diagnostics (Basel) 2023; 13: 1665
- 26 Hu Y, Xu M, Liu M. et al. Comparison of saliva and blood derived cell free RNAs for detecting oral squamous cell carcinoma. Sci Rep 2025; 15: 4645
- 27 Massier L, Musat N, Stumvoll M. et al. Tissue-resident bacteria in metabolic diseases: emerging evidence and challenges. Nature Metabolism 2024; 6: 1209-1224
- 28 Chakaroun RM, Massier L, Kovacs P. Gut Microbiome, Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or Bystanders?. Nutrients 2020; 12: 1082
- 29 Aleman RS, Moncada M, Aryana KJ. Leaky Gut and the Ingredients That Help Treat It: A Review. Molecules 2023; 28: 619
- 30 Salfer B, Li F, Wong DTW. et al. Urinary Cell-Free DNA in Liquid Biopsy and Cancer Management. Clin Chem 2022; 68: 1493-1501
- 31 Permenter J, Ishwar A, Rounsavall A. et al. Quantitative analysis of genomic DNA degradation in whole blood under various storage conditions for molecular diagnostic testing. Mol Cell Probes 2015; 29: 449-453
- 32 Bulla A, De Witt B, Ammerlaan W. et al. Blood DNA Yield but Not Integrity or Methylation Is Impacted After Long-Term Storage. Biopreserv Biobank 2016; 14: 29-38
- 33 Shim SM, Lee M, Jeon JP. et al. Assessment of the Impact of Preanalytical DNA Integrity on the Genome Data Quality. Biopreserv Biobank 2024; 22: 517-527
- 34 Kopfnagel V, Klopp N, Bernemann I. et al. Effects of Repeated Freeze and Thaw Cycles on the Genome-Wide DNA Methylation Profile of Isolated Genomic DNA. Biopreserv Biobank 2024; 22: 110-114
- 35 Drummond EM, Gibney ER. Epigenetic regulation in obesity. Curr Opin Clin Nutr Metab Care 2013; 16: 392-397
- 36 Wahl S, Drong A, Lehne B. et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature 2017; 541: 81-86
- 37 Chakravarti R, Lenka SK, Gautam A. et al. A Review on CRISPR-mediated Epigenome Editing: A Future Directive for Therapeutic Management of Cancer. Curr Drug Targets 2022; 23: 836-853
- 38 Pollastri A, Kovacs P, Keller M. Circulating Cell-Free DNA in Metabolic Diseases. J Endocr Soc 2025; 9: bvaf006
- 39 Haghiac M, Vora NL, Basu S. et al. Increased death of adipose cells, a path to release cell-free DNA into systemic circulation of obese women. Obesity (Silver Spring. Md.) 2012; 20: 2213-2219
- 40 Mhatre M, Adeli S, Norwitz E. et al. The Effect of Maternal Obesity on Placental Cell-Free DNA Release in a Mouse Model. Reprod Sci 2019; 26: 1218-1224
- 41 Camuzi Zovico PV, Neto VHG, Venancio FA. et al. Cell-free DNA as an obesity biomarker. Physiological research 2020; 69: 515-520
- 42 Drag MH, Debes KP, Franck CS. et al. Nanopore sequencing reveals methylation changes associated with obesity in circulating cell-free DNA from Gottingen Minipigs. Epigenetics 2023; 18: 2199374
- 43 Bartels MS, Scheffler L, Chakaroun R. et al. Increased circulating cell-free DNA in insulin resistance. Diabetes & metabolism 2020; 46: 249-252
- 44 Nishimoto S, Fukuda D, Higashikuni Y. et al. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance. Science advances 2016; 2: e1501332
- 45 Zhong J, Zareifi D, Weinbrenner S. et al. adiposetissue.org: A knowledge portal integrating clinical and experimental data from human adipose tissue. Cell Metabolism 2025; 37: 566-569
- 46 Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD. et al. Untargeted Metabolomics Strategies-Challenges and Emerging Directions. J Am Soc Mass Spectrom 2016; 27: 1897-1905
- 47 Duong VA, Lee H. Bottom-Up Proteomics: Advancements in Sample Preparation. Int J Mol Sci 2023; 24: 5350
- 48 Weikert J, Mehrländer A, Baber R. Keep cool! Observed temperature variations at different process stages of the biobanking workflow – examples from the Leipzig medical biobank. Journal of Laboratory Medicine 2023; 47: 69-80
- 49 Ouchi N, Parker JL, Lugus JJ. et al. Adipokines in inflammation and metabolic disease. Nat Rev Immunol 2011; 11: 85-97
- 50 Baber R, Kiehntopf M. Automation in biobanking from a laboratory medicine perspective. Journal of Laboratory Medicine 2019; 43: 329-338
