RSS-Feed abonnieren
DOI: 10.1055/a-2722-8616
Effects of Empagliflozin in Heart Failure Patients with Type 2 Diabetes: A Biomarker Perspective
Autoren
Gefördert durch: Deutsche Diabetes Gesellschaft
Gefördert durch: Boehringer Ingelheim
Gefördert durch: German Academic Exchange Service London Registration number (trial ID): EudraCTN0 2016-000214-30, Trial registry: ClinicalTrials.gov (http://www.clinicaltrials.gov/), Type of Study: Randomized, placebo – controlled single center study
Abstract
Background
Sodium-glucose co-transporter inhibitors significantly reduce cardiovascular mortality, hospitalization for heart failure, and improve renal outcomes regardless of diabetes status. This study investigated the effect of empagliflozin on plasma biomarkers to explore underlying mechanisms.
Methods
Adult patients with type 2 diabetes and heart failure with either left ventricular ejection fraction≤45% (EFFORT-1) or>45% (EFFORT-2) were recruited. Patients received 25 mg empagliflozin or placebo for 48 weeks. Plasma levels of endothelin-1, galectin-3, insulin-like growth factor binding protein-7, and kidney injury molecule-1 (KIM-1) were measured at baseline and at weeks 2, 12, 24, and 48.
Results
A total of 63 patients were recruited, 24 in EFFORT-1 and 39 in EFFORT-2. Empagliflozin significantly reduced KIM-1 levels by 38% at week 48 in EFFORT-2 compared with placebo (95% confidence interval: –57%, –13%). No significant impact on other biomarkers was observed.
Conclusion
Empagliflozin demonstrated, as shown by the decrease in KIM-1 levels, a renal tubular protective effect in heart failure patients with type 2 diabetes.
Publikationsverlauf
Eingereicht: 27. August 2025
Angenommen: 08. Oktober 2025
Artikel online veröffentlicht:
25. November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Home, Resources, diabetes L with, et al. IDF Diabetes Atlas (10th Ed.) https://diabetesatlas.org/
- 2 International Diabetes Federation. Facts & figures https://idf.org/about-diabetes/diabetes-facts-figures/
- 3 Ormazabal V, Nair S, Elfeky O. et al. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol 2018; 17: 122
- 4 Packer M. Heart Failure: The most important, preventable, and treatable cardiovascular complication of type 2 diabetes. Diabetes Care 2018; 41: 11-13
- 5 Vallon V, Thomson SC. Targeting renal glucose reabsorption to treat hyperglycaemia: The pleiotropic effects of SGLT2 inhibition. Diabetologia 2017; 60: 215-225
- 6 Heerspink HJL, Stefánsson BV, Correa-Rotter R. et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med 2020; 383: 1436-1446
- 7 Anker SD, Butler J, Filippatos G. et al. Effect of empagliflozin on cardiovascular and renal outcomes in patients with heart failure by baseline diabetes status: Results from the EMPEROR-Reduced Trial. Circulation 2021; 143: 337-349
- 8 McMurray JJV, Solomon SD, Inzucchi SE. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019; 381: 1995-2008
- 9 Packer M, Anker SD, Butler J. et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 2020; 383: 1413-1424
- 10 Anker SD, Butler J, Filippatos G. et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 2021; 385: 1451-1461
- 11 Solomon SD, de Boer RA, DeMets D. et al. Dapagliflozin in heart failure with preserved and mildly reduced ejection fraction: Rationale and design of the DELIVER trial. Eur J Heart Fail 2021; 23: 1217-1225
- 12 McDonagh TA, Metra M, Adamo M. et al. 2023 Focused update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2023; 44: 3627-3639
- 13 Lopaschuk GD, Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: A state-of-the-art review. JACC Basic Transl Sci 2020; 5: 632-644
- 14 Kinugawa T, Kato M, Ogino K. et al. Plasma endothelin-1 levels and clinical correlates in patients with chronic heart failure. J Card Fail 2003; 9: 318-324
- 15 de Boer RA, Yu L, van Veldhuisen DJ. Galectin-3 in cardiac remodeling and heart failure. Curr Heart Fail Rep 2010; 7: 1-8
- 16 Gandhi PU, Gaggin HK, Sheftel AD. et al. Prognostic usefulness of insulin-like growth factor-binding protein 7 in heart failure with reduced ejection fraction: A novel biomarker of myocardial diastolic function?. Am J Cardiol 2014; 114: 1543-1549
- 17 Brankovic M, Akkerhuis KM, Hoorn EJ. et al. Renal tubular damage and worsening renal function in chronic heart failure: Clinical determinants and relation to prognosis (Bio-SHiFT study). Clin Cardiol 2020; 43: 630-638
- 18 Nadruz W. Myocardial remodeling in hypertension. J Hum Hypertens 2015; 29: 1-6
- 19 Tschöpe C, Kasner M, Westermann D. et al. The role of NT-proBNP in the diagnostics of isolated diastolic dysfunction: Correlation with echocardiographic and invasive measurements. Eur Heart J 2005; 26: 2277-2284
- 20 Oelze M, Kröller-Schön S, Welschof P. et al. The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PLoS One 2014; 9: e112394
- 21 Quagliariello V, De Laurentiis M, Rea D. et al. The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc Diabetol 2021; 20: 150
- 22 Koyani CN, Plastira I, Sourij H. et al. Empagliflozin protects heart from inflammation and energy depletion via AMPK activation. Pharmacol Res 2020; 158: 104870
- 23 Kawanabe Y, Nauli SM. Endothelin. Cell Mol Life Sci 2011; 68: 195-203
- 24 Amiri F, Virdis A, Neves MF. et al. Endothelium-restricted overexpression of human endothelin-1 causes vascular remodeling and endothelial dysfunction. Circulation 2004; 110: 2233-2240
- 25 Yang LL, Gros R, Kabir MG. et al. Conditional cardiac overexpression of endothelin-1 induces inflammation and dilated cardiomyopathy in mice. Circulation 2004; 109: 255-261
- 26 Dimitriadis K, Adamopoulou E, Pyrpyris N. et al. The effect of SGLT2 inhibitors on the endothelium and the microcirculation: From bench to bedside and beyond. Eur Heart J Cardiovasc Pharmacother 2023; 9: 741-757
- 27 Pirklbauer M, Bernd M, Fuchs L. et al. Empagliflozin inhibits basal and IL-1β-mediated MCP-1/CCL2 and endothelin-1 expression in human proximal tubular cells. Int J Mol Sci 2020; 21: 8189
- 28 Mancini SJ, Boyd D, Katwan OJ. et al. Canagliflozin inhibits interleukin-1β-stimulated cytokine and chemokine secretion in vascular endothelial cells by AMP-activated protein kinase-dependent and -independent mechanisms. Sci Rep 2018; 8: 5276
- 29 Yeoh SE, Docherty KF, Campbell RT. et al. Endothelin-1, outcomes in patients with heart failure and reduced ejection fraction, and effects of dapagliflozin: Findings from DAPA-HF. Circulation 2023; 147: 1670-1683
- 30 Tian J, Zhang M, Suo M. et al. Dapagliflozin alleviates cardiac fibrosis through suppressing EndMT and fibroblast activation via AMPKα/TGF-β/Smad signalling in type 2 diabetic rats. J Cell Mol Med 2021; 25: 7642-7659
- 31 Dhingra NK, Mistry N, Puar P. et al. SGLT2 inhibitors and cardiac remodelling: A systematic review and meta-analysis of randomized cardiac magnetic resonance imaging trials. ESC Heart Fail 2021; 8: 4693-4700
- 32 Díaz-Alvarez L, Ortega E. The many roles of galectin-3, a multifaceted molecule, in innate immune responses against pathogens. Mediators Inflamm 2017; 2017: 9247574
- 33 Ortega-Paz L, Cristóbal H, Ortiz-Perez JT. et al. Direct actions of dapagliflozin and interactions with LCZ696 and spironolactone on cardiac fibroblasts of patients with heart failure and reduced ejection fraction. ESC Heart Failure 2023; 10: 453-464
- 34 Januzzi JL, Butler J, Jarolim P. et al. Effects of canagliflozin on cardiovascular biomarkers in older adults with type 2 diabetes. J Am Coll Cardiol 2017; 70: 704-712
- 35 Gopal DM, Kommineni M, Ayalon N. et al. Relationship of plasma galectin-3 to renal function in patients with heart failure: Effects of clinical status, pathophysiology of heart failure, and presence or absence of heart failure. J Am Heart Assoc 2012; 1: e000760
- 36 Januzzi JL, Packer M, Claggett B. et al. IGFBP7 (insulin-like growth factor-binding protein-7) and neprilysin inhibition in patients with heart failure. Circ Heart Fail 2018; 11: e005133
- 37 Ashrafi Jigheh Z, Ghorbani Haghjo A, Argani H. et al. Empagliflozin attenuates renal and urinary markers of tubular epithelial cell injury in streptozotocin-induced diabetic rats. Indian J Clin Biochem 2020; 35: 109-114
- 38 Januzzi JL, Butler J, Sattar N. et al. Insulin-like growth factor binding protein 7 predicts renal and cardiovascular outcomes in the canagliflozin cardiovascular assessment study. Diabetes Care 2021; 44: 210-216
- 39 Ferreira JP, Packer M, Sattar N. et al. Insulin-like growth factor binding protein-7 concentrations in chronic heart failure: Results from the EMPEROR programme. Eur J Heart Fail 2024; 26: 806-816
- 40 Adamson C, Welsh P, Docherty KF. et al. IGFBP-7 and outcomes in heart failure with reduced ejection fraction. JACC: Heart Fail 2023; 11: 291-304
- 41 Dekkers CCJ, Petrykiv S, Laverman GD. et al. Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers. Diabetes Obes Metab 2018; 20: 1988-1993
- 42 Oraby MA, El-Yamany MF, Safar MM. et al. Dapagliflozin attenuates early markers of diabetic nephropathy in fructose-streptozotocin-induced diabetes in rats. Biomed Pharmacother 2019; 109: 910-920
- 43 Kuno A, Kimura Y, Mizuno M. et al. Empagliflozin attenuates acute kidney injury after myocardial infarction in diabetic rats. Sci Rep 2020; 10: 7238
