Horm Metab Res 2018; 50(02): 117-123
DOI: 10.1055/s-0043-124435
Endocrine Care
© Georg Thieme Verlag KG Stuttgart · New York

Associations of TNFRSF1A Polymorphisms with Autoimmune Thyroid Diseases: A Case-Control Study

Xiao-Qing Shao
1   Department of Endocrinology, Jinshan Hospital of Fudan University, Jinshan District, Shanghai, China
,
Xiao-Lian Ding
2   Department of Nephrology and Endocrinology, Weinan Central Hospital, Weinan, China
,
Kaida Mu
3   Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Pudong New District, Shanghai, China
,
Xuan Wang
1   Department of Endocrinology, Jinshan Hospital of Fudan University, Jinshan District, Shanghai, China
,
Xiao-Fei An
1   Department of Endocrinology, Jinshan Hospital of Fudan University, Jinshan District, Shanghai, China
,
Qiu-Ming Yao
1   Department of Endocrinology, Jinshan Hospital of Fudan University, Jinshan District, Shanghai, China
,
Ling Li
1   Department of Endocrinology, Jinshan Hospital of Fudan University, Jinshan District, Shanghai, China
,
Qian Li
1   Department of Endocrinology, Jinshan Hospital of Fudan University, Jinshan District, Shanghai, China
,
Rong-Hua Song
1   Department of Endocrinology, Jinshan Hospital of Fudan University, Jinshan District, Shanghai, China
,
Shuang-tao He
1   Department of Endocrinology, Jinshan Hospital of Fudan University, Jinshan District, Shanghai, China
,
Jian Xu
1   Department of Endocrinology, Jinshan Hospital of Fudan University, Jinshan District, Shanghai, China
,
Jin-An Zhang
1   Department of Endocrinology, Jinshan Hospital of Fudan University, Jinshan District, Shanghai, China
› Author Affiliations
Further Information

Publication History

received 09 June 2017

accepted 04 December 2017

Publication Date:
05 February 2018 (online)

Abstract

Previous studies have shown associations of polymorphisms in the tumor necrosis factor (TNF) receptor super family member 1A (TNFRSF1A) gene with several groups of inflammatory and autoimmune related diseases, but associations of TNFRSF1A polymorphisms with autoimmune thyroid diseases (AITD), mainly including two sub-types of Hashimoto’s thyroiditis (HT) and Graves’ disease (GD), in the Chinese Han population is unclear. A case-control study of 1812 subjects (965 AITD patients and 847 unrelated healthy controls) was conducted to assess AITD associations with five single nucleotide polymorphisms (SNPs), including rs4149576, rs4149577, rs4149570, rs1800693, and rs767455 in the TNFRSF1A gene locus. Genotyping was performed and evaluated using the platform of ligase detection reaction. No significant difference was observed in the allele and genotype frequencies between HT or GD patients and controls in any of the five SNPs in the TNFRSF1A gene (all p values >0.05). However, a moderate association of rs4149570 with HT was found after adjusting for age and gender [odds ratio (OR)=1.40, p=0.03]. No obvious difference was found in the haplotype distribution of any of the five SNPs in the TNFRSF1A gene between the AITD patients and controls. These data suggest that these five SNPs in the TNFRSF1A gene are not associated with AITD in the Chinese Han population, but rs4149570 shows a weak association with HT after adjusting for gender and age.

 
  • References

  • 1 Tomer Y. Mechanisms of autoimmune thyroid diseases: From genetics to epigenetics. Annu Rev Pathol 2014; 9: 147-156
  • 2 Hasham A, Tomer Y. Genetic and epigenetic mechanisms in thyroid autoimmunity. Immunol Res 2012; 54: 204-213
  • 3 Huber A, Menconi F, Corathers S, Jacobson EM, Tomer Y. Joint genetic susceptibility to type 1 diabetes and autoimmune thyroiditis: From epidemiology to mechanisms. Endocr Rev 2008; 29: 697-725
  • 4 Tomer Y, Davies TF. Searching for the autoimmune thyroid disease susceptibility genes: From gene mapping to gene function. Endocr Rev 2003; 24: 694-717
  • 5 Tomer Y, Davies TF. Infection, thyroid disease, and autoimmunity. Endocr Rev 1993; 14: 107-120
  • 6 Velaga MR, Wilson V, Jennings CE, Owen CJ, Herington S, Donaldson PT, Ball SG, James RA, Quinton R, Perros P, Pearce SH. The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves’ disease. J Clin Endocr Metab 2004; 89: 5862-5865
  • 7 Heward JM, Brand OJ, Barrett JC, Carr-Smith JD, Franklyn JA, Gough SC. Association of PTPN22 haplotypes with Graves’ disease. J Clin Endocr Metab 2007; 92: 685-690
  • 8 Jacobson EM, Tomer Y. The CD40, CTLA-4, thyroglobulin, TSH receptor, and PTPN22 gene quintet and its contribution to thyroid autoimmunity: Back to the future. J Autoimmun 2007; 28: 85-98
  • 9 Vaidya B, Imrie H, Perros P, Young ET, Kelly WF, Carr D, Large DM, Toft AD, McCarthy MI, Kendall-Taylor P, Pearce SH. The cytotoxic T lymphocyte antigen-4 is a major Graves’ disease locus. Hum Mol Genet 1999; 8: 1195-1199
  • 10 Ban Y, Tozaki T, Taniyama M, Tomita M. Association of a CTLA-4 3’ untranslated region (CT60) single nucleotide polymorphism with autoimmune thyroid disease in the Japanese population. Autoimmunity 2005; 38: 151-153
  • 11 Tomer Y, Concepcion E, Greenberg DA. A C/T single-nucleotide polymorphism in the region of the CD40 gene is associated with Graves’ disease. Thyroid 2002; 12: 1129-1135
  • 12 Li CW, Concepcion E, Tomer Y. Dissecting the role of the FOXP3 gene in the joint genetic susceptibility to autoimmune thyroiditis and diabetes: A genetic and functional analysis. Gene 2015; 556: 142-148
  • 13 Ban Y, Tozaki T, Tobe T, Jacobson EM, Concepcion ES, Tomer Y. The regulatory T cell gene FOXP3 and genetic susceptibility to thyroid autoimmunity: An association analysis in Caucasian and Japanese cohorts. J Autoimmun 2007; 28: 201-207
  • 14 Tonacchera M, Pinchera A. Thyrotropin receptor polymorphisms and thyroid diseases. J Clin Endocr Metab 2000; 85: 2637-2639
  • 15 Dechairo BM, Zabaneh D, Collins J, Brand O, Dawson GJ, Green AP, Mackay I, Franklyn JA, Connell JM, Wass JA, Wiersinga WM, Hegedus L, Brix T, Robinson BG, Hunt PJ, Weetman AP, Carey AH, Gough SC. Association of the TSHR gene with Graves’ disease: The first disease specific locus. Eur J hum Genet 2005; 13: 1223-1230
  • 16 Tomer Y, Greenberg DA, Concepcion E, Ban Y, Davies TF. Thyroglobulin is a thyroid specific gene for the familial autoimmune thyroid diseases. J Clin Endocr Metab 2002; 87: 404-407
  • 17 Collins JE, Heward JM, Carr-Smith J, Daykin J, Franklyn JA, Gough SC. Association of a rare thyroglobulin gene microsatellite variant with autoimmune thyroid disease. J Clin Endocr Metab 2003; 88: 5039-5042
  • 18 Maierhaba M, Zhang JA, Yu ZY, Wang Y, Xiao WX, Quan Y, Dong BN. Association of the thyroglobulin gene polymorphism with autoimmune thyroid disease in Chinese population. Endocrine 2008; 33: 294-299
  • 19 Yan N, Yu YL, Yang J, Qin Q, Zhu YF, Wang X, Song RH, Zhang JA. Association of interleukin-17A and -17F gene single-nucleotide polymorphisms with autoimmune thyroid diseases. Autoimmunity 2012; 45: 533-539
  • 20 Xiao L, Muhali FS, Cai TT, Song RH, Hu R, Shi XH, Jiang WJ, Li DF, He ST, Xu J, Zhang JA. Association of single-nucleotide polymorphisms in the STAT3 gene with autoimmune thyroid disease in Chinese individuals. Funct Integr Genomics 2013; 13: 455-461
  • 21 Muhali FS, Cai TT, Zhu JL, Qin Q, Xu J, He ST, Shi XH, Jiang WJ, Xiao L, Li DF, Zhang JA. Polymorphisms of CLEC16A region and autoimmune thyroid diseases. G3 (Bethesda) 2014; 4: 973-977
  • 22 Micheau O, Tschopp J. Induction of TNF receptor i-mediated apoptosis via two sequential signaling complexes. Cell 2003; 114: 181-190
  • 23 Bank S, Skytt Andersen P, Burisch J, Pedersen N, Roug S, Galsgaard J, Ydegaard Turino S, Brodersen JB, Rashid S, Kaiser Rasmussen B, Avlund S, Bastholm Olesen T, Jürgen Hoffmann H, Kragh Thomsen M, Ostergaard Thomsen V, Frydenberg M, Andersen Nexø B, Sode J, Vogel U, Andersen V. Polymorphisms in the inflammatory pathway genes TLR2, TLR4, TLR9, LY96, NFKBIA, NFKB1, TNFA, TNFRSF1A, IL6R, IL10, IL23R, PTPN22, and PPARG are associated with susceptibility of inflammatory bowel disease in a Danish cohort. PLoS One 2014; 9: e98815
  • 24 Hoffjan S, Okur A, Epplen JT, Wieczorek S, Chan A, Akkad DA. Association of TNFAIP3 and TNFRSF1A variation with multiple sclerosis in a German case-control cohort. Int J Immunogenet 2015; 42: 106-110
  • 25 Davidson SI, Liu Y, Danoy PA, Wu X, Thomas GP, Jiang L, Sun L, Wang N, Han J, Han H. Australo-Anglo-American Spondyloarthritis Consortium, Visscher PM, Brown MA, Xu H. Association of STAT3 and TNFRSF1A with ankylosing spondylitis in han Chinese. Ann Rheum Dis 2011; 70: 289-292
  • 26 Park TJ, Kim HJ, Kim JH, Bae JS, Cheong HS, Park BL, Shin HD. Associations of CD6, TNFRSF1A and IRF8 polymorphisms with risk of inflammatory demyelinating diseases. Neuropathol Appl Neurobiol 2013; 39: 519-530
  • 27 Kammoun-Krichen M, Bougacha-Elleuch N, Makni K, Mnif M, Jouida J, Abid M, Rebai A, Ayadi H. A potential role of TNFR gene polymorphisms in autoimmune thyroid diseases in the Tunisian population. Cytokine 2008; 43: 110-113
  • 28 Duraes C, Moreira CS, Alvelos I, Mendes A, Santos LR, Machado JC, Melo M, Esteves C, Neves C, Sobrinho-Simoes M, Soares P. Polymorphisms in the TNFA and IL6 genes represent risk factors for autoimmune thyroid disease. PLoS One 2014; 9: e105492
  • 29 Kammoun-Krichen M, Bougacha-Elleuch N, Rebai A, Mnif M, Abid M, Ayadi H. TNF gene polymorphisms in Graves’ disease: TNF-308 A/G meta-analysis. Ann Hum Boil 2008; 35: 656-661
  • 30 Namipashaki A, Razaghi-Moghadam Z, Ansari-Pour N. The essentiality of reporting Hardy-Weinberg Equilibrium calculations in population-based genetic association studies. Cell J 2015; 17: 187-192
  • 31 Salanti G, Amountza G, Ntzani EE, Ioannidis JP. Hardy-Weinberg equilibrium in genetic association studies: An empirical evaluation of reporting, deviations, and power. Eur J Hum Genetics 2005; 13: 840-848
  • 32 Zou GY. Statistical methods for the analysis of genetic association studies. Ann Hum Genetics 2006; 70: 262-276
  • 33 Zou GY, Donner A. The merits of testing Hardy-Weinberg equilibrium in the analysis of unmatched case-control data: A cautionary note. Ann Hum Genetics 2006; 70: 923-933
  • 34 Yan N, Meng S, Zhou J, Xu J, Muhali FS, Jiang W, Shi L, Shi X, Zhang J. Association between STAT4 gene polymorphisms and autoimmune thyroid diseases in a Chinese population. Int J Mol Sci 2014; 15: 12280-12293
  • 35 Camprubi D, Mitjavila F, Arostegui JI, Corbella X. Efficacy of anakinra in an adult patient with recurrent pericarditis and cardiac tamponade as initial manifestations of tumor necrosis factor receptor-associated periodic syndrome due to the R92Q TNFRSF1A variant. Int J Rheum Dis 2016; 20: 510-514
  • 36 Federici S, Sormani MP, Ozen S, Lachmann HJ, Amaryan G, Woo P, Kone-Paut I, Dewarrat N, Cantarini L, Insalaco A, Uziel Y, Rigante D, Quartier P, Demirkaya E, Herlin T, Meini A, Fabio G, Kallinich T, Martino S, Butbul AY, Olivieri A, Kuemmerle-Deschner J, Neven B, Simon A, Ozdogan H, Touitou I, Frenkel J, Hofer M, Martini A, Ruperto N, Gattorno M. Evidence-based provisional clinical classification criteria for autoinflammatory periodic fevers. Ann Rheum Diseases 2015; 74: 799-805
  • 37 Zhao S, Chen H, Wu G, Zhao C. The association of NLRP3 and TNFRSF1A polymorphisms with risk of ankylosing spondylitis and treatment efficacy of etanercept. J Clin Lab Anal 2017; e22138
  • 38 Leppa V, Surakka I, Tienari PJ, Elovaara I, Compston A, Sawcer S, Robertson N, De-Jager PL, Aubin C, Hafler DA, Oturai AB, Bach Søndergaard H, Sellebjerg F, Soelberg Sørensen P, Hemmer B, Cepok S, Winkelmann J, Wichmann HE, Comabella M, Bustamante MF, Montalban X, Olsson T, Kockum I, Hillert J, Alfredsson L, Goris A, Dubois B, Mero IL, Smestad C, Celius EG, Harbo HF, D'Alfonso S, Bergamaschi L, Leone M, Ristori G, Kappos L, Hauser SL, Cournu I, Fontaine B, Boonen S, Polman C, Palotie A, Peltonen L, Saarela J. The genetic association of variants in CD6, TNFRSF1A and IRF8 to multiple sclerosis: A multicenter case-control study. PLoS One 2011; 6: e18813
  • 39 Gregory AP, Dendrou CA, Attfield KE, Haghikia A, Xifara DK, Butter F, Poschmann G, Kaur G, Lambert L, Leach OA, Prömel S, Punwani D, Felce JH, Davis SJ, Gold R, Nielsen FC, Siegel RM, Mann M, Bell JI, McVean G, Fugger L. TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis. Nature 2012; 488: 508-511
  • 40 The Lenercept Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group. TNF neutralization in MS: Results of a randomized, placebo-controlled multicenter study. The lenercept multiple sclerosis study group and the university of British Columbia MS/MRI analysis group. Neurology 1999; 53: 457–465
  • 41 Shibata S, Saeki H, Tsunemi Y, Kato T, Nakamura K, Kakinuma T, Kagami S, Fujita H, Tada Y, Sugaya M, Tamaki K. IL-17F single nucleotide polymorphism is not associated with psoriasis vulgaris or atopic dermatitis in the Japanese population. J Dermatol Sci 2009; 53: 163-165
  • 42 Dwi Putra SE, Reichetzeder C, Meixner M, Liere K, Slowinski T, Hocher B. DNA methylation of the glucocorticoid receptor gene promoter in the placenta is associated with blood pressure regulation in human pregnancy. J Hypertens 2017; 35: 2276-2286