Int J Sports Med 2000; 21(3): 168-174
DOI: 10.1055/s-2000-8880
Physiology and Biochemistry
Georg Thieme Verlag Stuttgart ·New York

Comparison of Muscle Oxygen Consumption Measured by Near Infrared Continuous Wave Spectroscopy during Supramaximal and Intermittent Pedalling Exercise

S. Y. Bae1 , T. Hamaoka2 , T. Katsumara2 , T. Shiga3 , H. Ohno4 , S. Haga1
  • 1 Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
  • 2 Department of Preventive Medicine and Public Health, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
  • 3 Omron Institute of Life Science Co. Ltd., Ukyo-ku, Kyoto, Japan
  • 4 Department of Hygiene, National Defence Medical College, Tokorozawa, Saitama, Japan
Further Information

Publication History

Publication Date:
31 December 2000 (online)

The two purposes of the present study were 1) to determine the oxygen consumption in working skeletal muscle from the oxygenation measured by near-infrared continuous-wave spectroscopy (NIRcws) with the arterial occlusion method during the resting condition, INTVT, and INTMAX and 2) to examine whether the decline rate of oxygenation is related to maximal oxygen uptake. Eight healthy males (aged 19.8 ± 0.4 yr, height 166.9 ± 17.4 cm, weight 62.1 ± 2.5 kg, and maximal oxygen uptake [VšO2max] 55.9 ± 1.9 ml/kg · min--1) took part in this study. The oxygenation was measured by NIRcws during the Wingate anaerobic test (WAnT) and two intermittent pedalling exercises of VT (INTVT) and maximal (INTMAX) work intensity. The decline rates of oxygenation obtained during the resting condition, INTVT, and INTMAXwith arterial occlusion were 0.43 ± 0.05 %/sec, 4.94 ± 0.31 %/sec, and 8.16 ± 0.38 %/sec, respectively, and that during the WAnT without arterial occlusion was 8.73 ± 0.49 %/sec. The decline rate of oxygenation during the WAnT was significantly (p < 0.0001) related to maximal oxygen uptake (VšO2max). These findings indicate that O2 is utilized from the early phase, even during a supramaximal pedalling exercise, and that the oxidative metabolic capacity may be a factor contributing to supramaximal exercises. Therefore the arterial occlusion method with NIRcws is suitable for the evaluation of the muscle O2 consumption during exercise noninvasively.

References

  • 1 Bae S Y, Hamaoka T, Koseki S, Nakase Y, Kizaki T, Ohno H, Haga S. Effects of different work intensity on muscle oxygen consumption during intermittent exercise.  Med Sci Sports Exerc. 1998;  30 69
  • 2 Bae S Y, Yasukochi M, Kan K, Sasaki M, Koseki S, Hamaoka T, Iwane H, Haga S. Changes in oxygen content and blood volume in working skeletal muscle up to maximal exercise by near infrared spectroscopy -- changes at AT and exhaustion.  Therapeutic Research. 1996;  17 31-38
  • 3 Barker S J. Oxygen monitors.  Adv Anesthesia. 1989;  6 97
  • 4 Bar-or O. The Wingate anaerobic test: an update on methodology, reliability, and validity.  Sports Med. 1987;  4 381-394
  • 5 Beaver W L, Wasserman K, Whipp B J. A new method for detecting anaerobic threshold by gas exchange.  J Appl Physiol. 1986;  60 2020-2027
  • 6 Camus G, Thys H. An evaluation of the maximal anaerobic capacity in man.  Int J Sports Med. 1991;  9 456-460
  • 7 Chance B, Dait T M, Chang C, Hamaoka T, Hagerman F. Recovery from exercise-induced desaturation in the quadriceps muscle of elite competitive rowers.  Am J Physiol. 1992;  262 775
  • 8 Chance B. Rapid and sensitive spectrophotometry. I. The accelerated and stopped-flow methods for the measurement of the reaction kinetics and spectra of unstable compounds in the visible region of the spectrum.  Rev Sci Instrum. 1951;  22 619-627
  • 9 De Blasi R A, Cpie M, Elwell C, Safoue F, Ferrari M. Noninvasive measurement of human forearm oxygen consumption by near infrared spectroscopy.  Eur J Appl Physiol. 1993;  67 20-25
  • 10 di Prampero P E. Energetics of muscular exercise.  Rev Physiol Biochem Pharmacol. 1981;  89 144-222
  • 11 Granier P, Mercier B, Mercier J, Anselme F, Préfaut C. Aerobic and anaerobic contribution to Wingate test performance in sprint and middle-distance runners.  Eur J Appl Physiol. 1995;  70 58-65
  • 12 Green S. Measurement of anaerobic work capacities in humans.  Sports Med. 1995;  19 32-42
  • 13 Gregory C B, Mary E N, Leslie H B, Henryk K AL. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise.  J Appl Physiol. 1996;  80 876-884
  • 14 Haga S, Bae S Y, Hamaoka T, Katsumura T, Toshinai K, Koseki S, Shiga T, Nakase Y, Kizaki T, Ohno H. Oxidative metabolism in skeletal muscle measured during supramaximal exercise in sprinter and active control groups by near infrared continuous wave spectroscopy.  Adv Exerc Sports Physiol. 1998;  4 57-64
  • 15 Hamaoka T, Albani C, Chance B, Iwane H. A new method for the evaluation of muscle aerobic capacity in relation to physical activity measured by near infrared spectroscopy.  Med Sport Sci. 1992;  37 421-429
  • 16 Hamaoka T, Iwane H, Shimomitsu T, Katsumura T, Murase N, Nishio S, Osada T, Kurosawa Y, Chance B. Noninvasive measures of oxidative metabolism on working human muscles by near-infrared spectroscopy.  J Appl Physiol. 1996;  81 1410-1417
  • 17 Hamaoka T, Mizuno M, Osada T, Ratkevicius A, Nielsen A N, Nakagawa Y, Katsumura T, Shimomitsu T, Quistorff B. Changes in oxygenation and phosphocreatine during exercise and recovery in relation to fiber types and capillary supply in human skeletal muscle.  Photon Propagation in Tissues III Proc. SPIE. 1997;  3194 478-484
  • 18 Hampson N B, Claude A P. Near infrared monitoring of human skeletal muscle oxygenation during forearm ischemia.  J Appl Physiol. 1988;  64 2449-2457
  • 19 Hill D W, Smith J C. Gender difference in anaerobic capacity: role of aerobic contribution.  Br J Sports Med. 1993;  27 45-48
  • 20 Hirvonen J, Rehunen S, Rusko H, Härkönen M. Breakdown of high-energy phosphate compounds and lactate accumulation during short supramaximal exercise.  Eur J Appl Physiol. 1987;  25 253-259
  • 21 Honig C R, Connett R J, Gayeski T EJ. O2 transport and its interaction with metabolism: a systems view of aerobic capacity.  Med Sci Sports Exerc. 1992;  24 47-53
  • 22 Jacobs I, Esbjornsson M, Sylvén C, Holm I, Jansson E. Sprint training effects on muscle myoglobin, enzymes, fiber types and blood lactate.  Med Sci Sports Exerc. 1987;  19 368-374
  • 23 Kavanagh M F, Jacobs I. Breath-by-breath oxygen consumption during performance of the Wingate Test.  Can J Sport Sci. 1988;  13 91-93
  • 24 Mancini D M, Bolinger L, Li H, Kendrick K, Chance B, Wilson J R. Validation of near-infrared spectroscopy in humans.  J Appl Physiol. 1994;  77 2740-2747
  • 25 Mcardle W D, Katch F I, Katch V L. Exercise Physiology. Maryland; Williams and Wilkins 1996: 121
  • 26 Medbø J I, Tabata I. Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise.  J Appl Physiol. 1989;  67 1881-1886
  • 27 Millikan G A. The oximeter, an instrument for measuring continuously the oxygen saturation of arterial blood in man.  Rev Sci Instrum. 1942;  13 434-444
  • 28 Serresse O, Lortie G, Bouchard C, Boulay M R. Estimation of the contribution of the various energy systems during maximal work of short duration.  Int J Sports Med. 1988;  9 456-460
  • 29 Shiga T, Tanabe K, Nakase Y, Shida T, Chance B. Development of portable tissue oximeter using near infra-red spectroscopy.  Med Biol Eng Comput. 1995;  33 622-626
  • 30 Thomson J M, Garvie K J. A laboratory method for determination of anaerobic energy expenditure during sprinting.  Can J Appl Sport Sci. 1981;  6 21-26
  • 31 Wilson J R, Mancini D M, Mccully K, Ferraro N, Lanoce Y, Chance B. Noninvasive detection of skeletal muscle underperfusion with near-infrared spectroscopy in patients with heart failure.  Circulation. 1989;  80 1668-1674
  • 32 Withers R T, Sherman W M, Clark D G, Esselbach P C, Nolan S R, Mackay M H, Brinkman M. Muscle metabolism during 30, 60 and 90 s of maximal cycling on an air-braked ergometer.  Eur J Appl Physiol. 1991;  63 354-362
  • 33 Yamamoto M, Kanehisa H. Dynamics of anaerobic and aerobic energy supplies during sustained high intensity exercise on cycle ergometer.  Eur J Appl Physiol. 1995;  71 320-325

MHSS Sang Yong Bae

Institute of Health and Sport Sciences University of Tsukuba

1-1-1 Tennodai

Tsukuba

Ibaraki 305-8574

Japan

Phone: + 81 (298) 536445

Fax: + 81 (298) 536507

Email: bae@taiiku.tsukuba.ac.jp

    >