Int J Sports Med 2003; 24(5): 313-319
DOI: 10.1055/s-2003-40707
Physiology & Biochemistry
© Georg Thieme Verlag Stuttgart · New York

Fourier-Transform Infrared Spectrometry Determination of the Metabolic Changes During a Maximal 400-Meter Swimming Test

C.  Petibois1, 2 , G.  Déléris1
  • 1INSERM U443, Equipe de Chimie Bio-Organique, Bordeaux, Université Victor Segalen Bordeaux 2, France
  • 2Faculté des Sciences du Sport et de l’Education Physique, Université Victor Segalen Bordeaux 2, France
Further Information

Publication History

Accepted after revision: January 20, 2003

Publication Date:
17 July 2003 (online)

Abstract

We describe the metabolic changes in the blood that appeared during a maximal 400-m swimming test in 7 male swimmers by Fourier-transform infrared spectrometry (FT-IR spectrometry). A 400-m test (255.9 ± 6.8 s) was performed during which stroke frequency and time to complete each pool distance were recorded. In three other tests, the first 100 m, 200 m, and 300 m were swam at the same stroke frequency and velocity. Capillary blood samples were taken at rest and after tests to analyze change in plasma contents by FT-IR spectrometry. Best swimmers were characterized by higher glycemia increase at the onset of exercise (r = -0.91; p < 0.01). Lactate increase was also higher after 300 m (r = -0.97; p < 0.01). Higher amounts of fatty acids were also available at the end of exercise, as assessed by the relationships found between swimming velocity and concentrations of albumin (r = 0.96; p < 0.01), apolipoprotein C3 (r = 0.93; p < 0.01), triglycerides (r = -0.81; p < 0.05), and fatty acids (r = 0.97; p < 0.01). This metabolic response allowed the best swimmers to maintain longer their initial swimming velocity. The best swimmers presented also higher amino-acid concentration increase during exercise (r = 0.91; p < 0.01). Therefore, performance competence originated probably from better regulation in carbohydrate, lipid, and amino-acid metabolism.

References

  • 1 Bergman B C, Butterfield G E, Wolfel E E, Casazza G A, Lopaschuk G D, Brooks G A. Evaluation of exercise and training on muscle lipid metabolism.  Am J Physiol. 1999;  276 106-117
  • 2 Bergman B C, Horning M A, Casazza G A, Wolfel E E, Butterfield G E, Brooks G A. Endurance training increases gluconeogenesis during rest and exercise in men.  Am J Physiol Endocrinol Metab. 2000;  278 244-251
  • 3 Biolo G, Maggi S P, Williams B D, Tipton K T, Wolfe R R. Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans.  Am J Physiol. 1995;  268 514-520
  • 4 Bonen A. Lactate transporters (MCT proteins) in heart and skeletal muscles.  Med Sci Sports Exerc. 2000;  32 778-789
  • 5 Che Man YB, Setiowaty G. Application of fourier transform infrared spectroscopy to determine free fatty acid contents in palm olein.  Food Chem. 1999;  66 109-114
  • 6 Dill D B, Costill D L. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration.  J Appl Physiol. 1974;  37 247-248
  • 7 Hiscock N, Mackinnon L T. A comparison of plasma glutamine concentration in athletes from different sports.  Med Sci Sports Exerc. 1998;  30 1693-1696
  • 8 Kiens B. Training and fatty acid metabolism.  Adv Exp Med Biol. 1998;  441 229-238
  • 9 Madsen L, Rustan A C, Vaagenes H, Berge K, Dyroy E, Berge R K. Eicosapentaenoic and docosahexaenoic acid affect mitochondrial and peroxisomal fatty acid oxidation in relation to substrate preference.  Lipids. 1999;  34 951-963
  • 10 Petibois C, Rigalleau V, Melin A M, Perromat A, Cazorla G, Gin H, Deleris G. Determination of glucose in dried serum samples by Fourier-transform infrared spectroscopy.  Clin Chem. 1999;  45 1530-1535
  • 11 Petibois C, Deleris G, Cazorla G. Perspectives in the utilisation of Fourier-transform infrared spectroscopy of serum in sports medicine: health monitoring of athletes and prevention of doping.  Sports Med. 2000;  29 387-396
  • 12 Petibois C, Cazorla G, Cassaigne A, Deleris G. Plasma protein contents determined by Fourier-transform infrared spectrometry.  Clin Chem. 2001;  47 730-738
  • 13 Petibois C, Cazorla G, Cassaigne A, Déléris G. Application of FT-IR spectrometry to determine the global metabolic adaptations to physical conditioning in sportsmen.  Appl Spectrosc. 2002;  56 10-17
  • 14 Petibois C, Cazorla G, Deleris G. Triglycerides and glycerol concentration determinations using plasma FT-IR spectra.  Appl Spectrosc. 2002;  56 10-17
  • 15 Petibois C, Paiva M, Cazorla G, Deleris G. Discriminant serum biochemical parameters in top class marathon performances.  Jpn J Physiol. 2002;  52 181-190
  • 16 Phillips S M, Tipton K D, Ferrando A A, Wolfe R R. Resistance training reduces the acute exercise-induced increase in muscle protein turnover.  Am J Physiol. 1999;  276 118-124
  • 17 Shaw R A, Kotowich S, Mantsch H H, Leroux M. Quantitation of protein, creatinine, and urea in urine by near-infrared spectroscopy.  Clin Biochem. 1996;  29 11-19
  • 18 Williams B D, Chinkes D L, Wolfe R R. Alanine and glutamine kinetics at rest and during exercise in humans.  Med Sci Sports Exerc. 1998;  30 1053-1058
  • 19 Wood B R, Tait B, McNaughton D. Fourier-transform infrared spectroscopy as a method for monitoring the molecular dynamics of lymphocyte activation.  Appl Spectroscopy. 2000;  54 353-359
  • 20 Yang R, Mack G, Wolfe R, Nadel E. Albumin synthesis after intense intermittent exercise in human subjects.  J Appl Physiol. 1998;  84 584-592

Dr. C. Petibois

INSERM U443 · Groupe de Chimie Bio-Organique

146 rue Léo Saignat · 33076 Bordeaux · France ·

Phone: +33 5 57 57 10 02

Fax: +33 5 57 57 10 02

Email: cyril.petibois@bioorga.u-bordeaux2.fr

    >