muscle movement causes breaking up of the calcified worm rendering a beaded appearance. The localization and the characteristic appearance of the calcifications in the patient were diagnostic of guinea worm calcification. Guinea worm calcification may take several forms. Typically it calcifies in the lower extremities, where it assumes a long string like serpigenous or curvilinear calcification which may be very long extending to even meters. These worms are elongated, nodular, beaded and fragmented due to muscular action breaking up the worm in several areas, particularly in the calf. However, the calcification can also be oval as a result of dystrophic calcification.

The causes of soft tissue calcification are:
1. Dystrophic calcification,
2. Metastatic calcification,
3. Calcinosis,
4. Chondrocalcinosis,
5. Synovial chondromatosis.

Dystrophic calcification could be due to venous, infection, neoplasm, drugs; vitamin D overdose, autoimmune, trauma. Venous calcification occurs within the valves, phleboliths and has a characteristic central lucency. Subcutaneous sheet like calcification are seen in postmenopausal females in venous calcification. In cysticercosis, patients have multiple "rice grain" calcifications which are oriented along the direction of the muscle fibers. Metastatic osteosarcoma and primary soft tissue osteosarcoma can be amorphous, fluffy around the bone.

All calcification have a characteristic appearance which helps us to narrow down the differential. Guinea worm calcification can attain various forms which may range from linear elongated to curvilinear to oval forms. Our patient had a linear calcification and as her calcification was in the lumbar area the size was smaller than the usual forms. Also most have a beaded appearance as was present in our case. Linear and beaded appearance and the length of the calcification present in our case have a differential of guinea worm calcification.

In the recent years DM has been eradicated from several countries.

Reference
Letters to the Editor

Figure 1: Plain CT scan of the brain of two different patients shows partial volume of sagittal and straight sinuses as hyperdensity in the posterior interhemispheric fissure.

volume of straight and sagittal sinuses, commonly seen as hyperdense in plain CT scan imaging. Figure 1 shows plain CT scan of the brain of two different patients; partial volume of the sinuses can be seen there. Second, the posterior portion of the image in figure in the original article appears as inverted Y appearance when it is following the course of transverse sinuses. Subdural hematoma will never or rarely have inverted Y-shaped most posterior end. Whether an MRI with angio- and veno-sequence was done to rule out above condition is not clear, and no remark has been done on follow-up imaging whether it was done or not.

MA Hashmi

EKO CT and MRI Scan Centre at Medical College and Hospital Campus, Kolkata, India

Address for correspondence:
Dr. M A Hashmi, MRI-Section, EKO CT and MRI Scan Centre at Medical College And Hospitals Campus, 88, College St, Kolkata - 700 073, India. E-mail: ahashmidrrad@yahoo.co.in

Reference