Hamostaseologie 2011; 31(03): 165-173
DOI: 10.5482/ha-1155
Review
Schattauer GmbH

Thrombin activatable fibrinolysis inhibitor

Thrombinaktivierbarer Fibrinolyseinhibitor
P. J. Declerck
1   Laboratory for Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, KULeuven, Leuven, Belgium
› Author Affiliations
Further Information

Publication History

received: 10 May 2011

accepted in revised form: 26 May 2011

Publication Date:
28 December 2017 (online)

Summary

Thrombin activatable fibrinolysis inhibitor (TAFI) was discovered two decades ago as a consequence of the identification of an unstable carboxypeptidase (CPU), which was formed upon thrombin activation of the respective pro-enzyme (proCPU). The antifibrinolytic function of the activated form (TAFIa, CPU) is directly linked to its capacity to remove C-terminal lysines from the surface of the fibrin clot. No endogenous inhibitors have been identified, but TAFIa activity is regulated by its intrinsic temperature-dependent instability with a half-life of 8 to 15 min at 37 °C. A variety of studies have demonstrated a role for TAFI/TAFIa in venous and arterial diseases. In addition, a role in inflammation and cell migration has been shown. Since an elevated level of TAFIa it is a potential risk factor for thrombotic disorders, many inhibitors, both at the level of activation or at the level of activity, have been developed and were proven to exhibit a profibrinolytic effect in animal models. Pharmacologically active inhibitors of the TAFI/TAFIa system may open new ways for the prevention of thrombotic diseases or for the establishment of adjunctive treatments during thrombolytic therapy.

Zusammenfassung

Der Thrombin-aktivierbare Fibrinolyseinhibitor (TAFI) wurde schon vor 20 Jahren bei der Identifizierung einer instabilen Carboxypeptidase (CPU) entdeckt, die sich nach Thrombinaktivierung des entsprechenden Proenzyms (proCPU) bildet. Die antifibrinolytische Wirkung der aktivierten Form (TAFIa, CPU) steht direkt mit der Funktion in Verbindung, C-terminale Lysine von der Oberfläche eines Fibringerinnsels zu entfernen. Endogene Inhibitoren gegen TAFI konnten nicht identifiziert werden, die Aktivität von TAFIa wird jedoch über dessen temperaturabhängige Instabilität reguliert, die Halbwertszeit bei 37 °C beträgt 8–15 min. Die Rolle von TAFI/TAFIa bei Venenund Arterienerkrankungen konnte in zahlreichen Studien nachgewiesen werden. Darüber hinaus spielt der Inhibitor nachweislich bei Entzündungen und Zellmigration eine Rolle. Da erhöhte TAFIa-Spiegel einen potenziellen Risikofaktor für thrombotische Störungen darstellen, wurden sowohl auf der Aktivierungsals auch auf der Aktivitätsebene zahlreiche Inhibitoren entwickelt, deren profibrinolytische Wirkung in Tiermodellen nachgewiesen werden konnte. Pharmakologisch aktive Inhibitoren des TAFI/TAFIa-Systems bieten möglicherweise neue Wege für die Prävention von Thromboseerkrankungen oder für die Einführung von Begleittherapien zur thrombolytischen Therapie.

 
  • References

  • 1 Hendriks D, Scharpe S, Vansande M. et al. Characterization of a carboxypeptidase in humanserum destinct from carboxypeptidase-N. J Clin Chem Clin Biochem 1989; 27: 277-285.
  • 2 Campbell W, Okada H. An arginine specific carboxypeptidase generated in blood during coagulation or inflammation which is unrelated to carboxypeptidase N or its subunits. Biochem Biophys Res Commun 1989; 162: 933-939.
  • 3 Eaton DL, Malloy BE, Tsai SP. et al. Isolation, molecular-cloning, and partial characterization of a novel carboxypeptidase-B from human plasma. J Biol Chem 1991; 266: 21833-21838.
  • 4 Bajzar L, Manuel R, Nesheim ME. Purification and characterization of TAFI, a thrombin-activatable fibrinolysis inhibitor. J Biol Chem 1995; 270: 14477-14484.
  • 5 Cote HCF, Stevens WK, Bajzar L. et al. Characterization of a stable form of human meizothrombin derived from recombinant prothrombin (R155A, R271A and R284A). J Biol Chem 1994; 269: 11374-11380.
  • 6 Vanhoof G, Wauters J, Schatteman K. et al. The gene for human carboxypeptidase U (CPU) – A proposed novel regulator of plasminogen activation – Maps to 13q14.11. Genomics 1996; 38: 454-455.
  • 7 Wei SW, Segura S, Vendrell J. et al. Identification and characterization of three members of the human metallocarboxypeptidase gene family. J Biol Chem 2002; 277: 14954-14964.
  • 8 Pereira PJB, Segura-Martin S, Oliva B. et al. Human procarboxypeptidase B: Three-dimensional structure and implications for thrombin-activatable fibrinolysis inhibitor (TAFI). J Mol Biol 2002; 321: 537-547.
  • 9 Willemse JL, Hendriks DF. Measurement of procarboxypeptidase U (TAFI) in human plasma: A laboratory challenge. Clin Chem 2006; 52: 30-36.
  • 10 Fleury V, Anglescano E. Characterization of the binding of plasminogen to fibrin surfaces; the role of carboxy-terminal lysines. Biochemistry 1991; 30: 7630-7638.
  • 11 Hoylaerts M, Rijken DC, Lijnen HR. et al. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem 1982; 257: 2912-2919.
  • 12 Boffa MB, Wang W, Bajzar L. et al. Plasma and recombinant thrombin-activable fibrinolysis inhibitor (TAFI) and activated TAFI compared with respect to glycosylation, thrombin/thrombomodulin-dependent activation, thermal stability, and enzymatic properties. J Biol Chem 1998; 273: 2127-2135.
  • 13 Leurs J, Hendriks D. Carboxypeptidase U (TAFla): a metallocarboxypeptidase with a distinct role in haemostasis and a possible risk factor for thrombotic disease. Thromb Haemost 2005; 94: 471-487.
  • 14 Walker JB, Bajzar L. The intrinsic threshold of the fibrinolytic system is modulated by basic carboxypeptidases, but the magnitude of the antifibrinolytic effect of activated thrombin-activable fibrinolysis inhibitor is masked by its instability. J Biol Chem 2004; 279: 27896-27904.
  • 15 Leurs J, Nerme V, Sim Y. et al. Carboxypeptidase U (TAFIa) prevents lysis from proceeding into the propagation phase through a threshold-dependent mechanism. J Thromb Haemost 2004; 02: 416-423.
  • 16 Shinohara T, Sakurada C, Suzuki T. et al. Procarboxypeptidase R cleaves bradykinin following activation. Int Arch Allergy Immunol 1994; 103: 400-404.
  • 17 Campbell WD, Lazoura E, Okada N. et al. Inactivation of C3a and C5a octapeptides by carboxypeptidase R and carboxypeptidase N. Microbiol Immunol 2002; 46: 131-134.
  • 18 Myles T, Nishimura T, Yun TH. et al. Thrombin activatable fibrinolysis inhibitor, a potential regulator of vascular inflammation. J Biol Chem 2003; 278: 51059-51067.
  • 19 Leung LLK, Myles T, Nishimura T. et al. Regulation of tissue inflammation by thrombi n-activatable carboxypeptidase B (or TAFI). Mol Immunol 2008; 45: 4080-4083.
  • 20 Fujimoto H, Gabazza EC, Taguchi O. et al. Thrombin-activatable fibrinolysis inhibitor deficiency attenuates bleomycin-induced lung fibrosis. Am J Pathol 2006; 168: 1086-1096.
  • 21 Morser J, Gabazza EC, Myles T. et al. What has been learnt from the thrombin-activatable fibrinolysis inhibitor-deficient mouse?. J Thromb Haemost 2010; 08: 868-876.
  • 22 Swaisgood CM, Schmitt D, Eaton D. et al. In vivo regulation of plasminogen function by plasma carboxypeptidase B. J Clin Invest 2002; 110: 1275-1282.
  • 23 Guimaraes AHC, Laurens N, Weijers EM. et al. TAFI and pancreatic carboxypeptidase B modulate in vitro capillary tube formation by human microvascular endothelial cells. Arterioscler Thromb Vasc Biol 2007; 27: 2157-2162.
  • 24 te Velde EA, Wagenaar GTM, Reijerkerk A. et al. Impaired healing of cutaneous wounds and colonic anastomoses in mice lacking thrombin-activatable fibrinolysis inhibitor. J Thromb Haemost 2003; 01: 2087-2096.
  • 25 Tsai SP, Drayna D. The gene encoding human plasma carboxypeptidase B (CPB2) resides on chromosome 13. Genomics 1992; 14: 549-550.
  • 26 Boffa MB, Maret D, Hamill JD. et al. Effect of single nucleotide polymorphisms on expression of the gene encoding thrombin-activatable fibrinolysis inhibitor: a functional analysis. Blood 2008; 111: 183-189.
  • 27 Brouwers GJ, Vos HL, Leebeek FWG. et al. A novel, possibly functional, single nucleotide polymorphism in the coding region of the thrombin-activatable fibrinolysis inhibitor (TAFI) gene is also associated with TAFI levels. Blood 2001; 98: 1992-1993.
  • 28 Bouma BN, Marx PF, Mosnier LO. et al. Thrombin-activatable fibrinolysis inhibitor (TAFI, plasma procarboxypeptidase B, procarboxypeptidase R, procarboxypeptidase U). Thromb Res 2001; 101: 329-354.
  • 29 Bajzar L, Nesheim ME, Tracy PB. The profibrinolytic effect of activated protein C in clots formed from plasma is TAFI-dependent. Blood 1996; 88: 2093-2100.
  • 30 Mosnier LO, von dem Borne PAK, Meijers JCM. et al. Plasma TAFI levels influence the clot lysis time in healthy individuals in the presence of an intact intrinsic pathway of coagulation. Thromb Haemost 1998; 80: 829-835.
  • 31 Gils A, Alessi MC, Brouwers E. et al. Development of a genotype 325-specific proCPU/TAFI ELISA. Arterioscler Thromb Vasc Biol 2003; 23: 1122-1127.
  • 32 Frere C, Tregouet DA, Morange PE. et al. Fine mapping of quantitative trait nucleotides underlying thrombin-activatable fibrinolysis inhibitor antigen levels by a transethnic study. Blood 2006; 108: 1562-1568.
  • 33 Carrieri C, Galasso R, Semeraro F. et al. The role of thrombin activatable fibrinolysis inhibitor and factor XI in platelet-mediated fibrinolysis resistance: a thromboelastographic study in whole blood. J Thromb Haemost 2011; 09: 154-162.
  • 34 Mosnier LO, Buijtenhuijs P, Marx PF. et al. Identification of thrombin activatable fibrinolysis inhibitor (TAFI) in human platelets. Blood 2003; 101: 4844-4846.
  • 35 Bajzar L, Morser J, Nesheim M. TAFI, or plasma procarboxypeptidase B, couples the coagulation and fibrinolytic cascades through the thrombin-thrombomodulin complex. J Biol Chem 1996; 271: 16603-16608.
  • 36 Mao SS, Cooper CM, Wood T. et al. Characterization of plasmin-mediated activation of plasma procarboxypeptidase B – Modulation by glycosaminoglycans. J Biol Chem 1999; 274: 35046-35052.
  • 37 Binette TM, Taylor FB, Peer G. et al. Thrombin-Thrombomodulin connects coagulation and fibrinolysis: more than an in vitro phenomenon. Blood 2007; 110: 3168-3175.
  • 38 Vercauteren E, Emmerechts J, Peeters M. et al. Evaluation of the profibrinolytic properties of an antiTAFI monoclonal antibody in a mouse thromboembolism model. Blood 2011; 117: 4615-4622.
  • 39 Mishra N, Vercauteren E, Develter J. et al. Identification and characterisation of monoclonal antibodies that impair the activation of human thrombin activatable fibrinolysis inhibitor through different mechanisms. Thromb Haemost. 2011 106. DOI: 10.1160/TH10-08-0546.
  • 40 Schneider M, Boffa M, Stewart R. et al. Two naturally occurring variants of TAFI (Thr-325 and Il-325) differ substantially with respect to thermal stability and antifibrinolytic activity of the enzyme. J Biol Chem 2002; 277: 1021-1030.
  • 41 Ceresa E, Van de Borne K, Peeters M. et al. Generation of a stable activated thrombin activable fibrinolysis inhibitor variant. J Biol Chem 2006; 281: 15878-15883.
  • 42 Ceresa E, Peeters M, Declerck PJ. et al. Announcing a TAFIa mutant with a 180-fold increased half-life and concomitantly a strongly increased antifibrinolytic potential. J Thromb Haemost 2007; 05: 418-420.
  • 43 Knecht W, Willemse J, Stenhamre H. et al. Limited mutagenesis increases the stability of human carboxypeptidase U (TAFIa) and demonstrates the importance of CPU stability over proCPU concentration in down-regulating fibrinolysis. FEBS J 2006; 273: 778-792.
  • 44 Boffa MB, Bell R, Stevens WK. et al. Roles of thermal instability and proteolytic cleavage in regulation of activated thrombin-activable fibrinolysis inhibitor. J Biol Chem 2000; 275: 12868-12878.
  • 45 Marx PF, Brondijk THC, Plug T. et al. Crystal structures of TAFI elucidate the inactivation mechanism of activated TAFI: a novel mechanism for enzyme autoregulation. Blood 2008; 112: 2803-2809.
  • 46 Marx PF, Hackeng TM, Dawson PE. et al. Inactivation of active thrombin-activable fibrinolysis inhibitor takes place by a process that involves conformational instability rather than proteolytic cleavage. J Biol Chem 2000; 275: 12410-12415.
  • 47 Marx PF, Havik SR, Marquart JA. et al. Generation and characterization of a highly stable form of activated thrombin-activable fibrinolysis inhibitor. J Biol Chem 2004; 279: 6620-6628.
  • 48 Willemse JL, Heylen E, Nesheim ME. et al. Carboxypeptidase U (TAFIa): a new drug target for fibrinolytic therapy?. J Thromb Haemost 2009; 07: 1962-1971.
  • 49 Wang W, Hendriks DF, Scharpe SS. Carboxypeptidase-U, a plasma carboxypeptidase with high-affinity for plasminogen. J Biol Chem 1994; 269: 15937-15944.
  • 50 Lazoura E, Campbell W, Yamaguchi Y. et al. Rational structure-based design of a novel carboxypeptidase R inhibitor. Chem Biol 2002; 09: 1129-1139.
  • 51 Barrow JC, Nantermet PG, Stauffer SR. et al. Synthesis and evaluation of imidazole acetic acid inhibitors of activated thrombin-activatable fibrinolysis inhibitor as novel antithrombotics. J Med Chem 2003; 46: 5294-5297.
  • 52 Polla MO, Tottie L, Norden C. et al. Design and synthesis of potent, orally active, inhibitors of carboxypeptidase U (TAFIa). Bioorg Med Chem 2004; 12: 1151-1175.
  • 53 Do YH, Gifford-Moore DS, Beight DW. et al. Inhibition of Thrombin Activatable Fibrinolysis Inhibitor by cysteine derivatives. Thromb Res 2005; 116: 265-271.
  • 54 Bunnage ME, Blagg J, Steele J. et al. Discovery of potent & selective inhibitors of activated thrombin-activatable fibrinolysis inhibitor for the treatment of thrombosis. J Med Chem 2007; 50: 6095-103.
  • 55 Islam I, Bryant J, Maya K. et al. 3-Mercaptopropionic acids as efficacious inhibitors of activated thrombin activatable fibrinolysis inhibitor (TAFIa). Bioorg Med Chem Lett 2007; 17: 1349-1354.
  • 56 Wang YX, Zhao L, Nagashima M. et al. A novel inhibitor of activated thrombin-activatable fibrinolysis inhibitor (TAFIa) – Part I: Pharmacological characterization. Thromb Haemost 2007; 97: 45-53.
  • 57 Muto Y, Suzuki K, Iida H. et al. EF6265, a novel inhibitor of activated thrombin-activatable fibrinolysis inhibitor, protects against sepsis-induced organ dysfunction in rats. Crit Care Med 2009; 37: 1744-1749.
  • 58 Reverter D, Vendrell J, Canals F. et al. A carboxypeptidase inhibitor from the medical leech Hirudo medicinalis – Isolation, sequence analysis, cDNA cloning, recombinant expression, and characterization. J Biol Chem 1998; 273: 32927-32933.
  • 59 Arolas JL, Lorenzo J, Rovira A. et al. A carboxypeptidase inhibitor from the tick Rhipicephalus bursa. J Biol Chem 2005; 280: 3441-3448.
  • 60 Schneider M, Nesheim M. Reversible inhibitors of TAFIa can both promote and inhibit fibrinolysis. J Thromb Haemost 2003; 01: 147-154.
  • 61 Gils A, Ceresa E, Macovei AM. et al. Modulation of TAFI function through different pathways – implications for the development of TAFI inhibitors. J Thromb Haemost 2005; 03: 2745-2753.
  • 62 Hillmayer K, Vancraenenbroeck R, De Maeyer M. et al. Discovery of novel mechanisms and molecular targets for the inhibition of activated thrombin activatable fibrinolysis inhibitor. J Thromb Haemost 2008; 06: 1892-1899.
  • 63 Buelens K, Hassanzadeh-Ghassabeh G, Muyldermans S. et al. Generation and characterization of inhibitory nanobodies towards thrombin activatable fibrinolysis inhibitor. J Thromb Haemost 2010; 08: 1302-1312.
  • 64 Willemse JL, Polla M, Hendriks DF. The intrinsic enzymatic activity of plasma procarboxypeptidase U (TAFI) can interfere with plasma carboxypeptidase N assays. Anal Biochem 2006; 356: 157-159.
  • 65 Valnickova Z, Thogersen IB, Potempa J. et al. Thrombin-activable fibrinolysis inhibitor (TAFI) zymogen is an active carboxypeptidase. J Biol Chem 2007; 282: 3066-3076.
  • 66 Willemse JL, Heylen E, Hendriks DF. The intrinsic enzymatic activity of procarboxypeptidase U (TAFI) does not significantly influence the fibrinolysis rate: a rebuttal. J Thromb Haemost 2007; 05: 1334-1336.
  • 67 Foley JH, Kim P, Nesheim ME. Thrombin-activable fibrinolysis inhibitor zymogen does not play a significant role in the attenuation of fibrinolysis. J Biol Chem 2008; 283: 8863-8867.
  • 68 Walker JB, Hughes B, James I. et al. Stabilization versus inhibition of TAFIa by competitive inhibitors in vitro. J Biol Chem 2003; 278: 8913-8921.
  • 69 Anand K, Pallares I, Valnickova Z. et al. The crystal structure of thrombin-activable fibrinolysis inhibitor (TAFI) provides the structural basis for its intrinsic activity and the short half-life of TAFIa. J Biol Chem 2008; 283: 29416-29423.
  • 70 Mao SS, Colussi D, Bailey CM. et al. Electrochemiluminescence assay for basic carboxypeptidases: inhibition of basic carboxypeptidases and activation of thrombin-activatable fibrinolysis inhibitor. Anal Biochem 2003; 319: 159-170.
  • 71 Sanglas L, Valnickova Z, Arolas JL. et al. Structure of activated thrombin-activatable fibrinolysis inhibitor, a molecular link between coagulation and fibrinolysis. Mol Cell 2008; 31: 598-606.
  • 72 Sanglas L, Arolas JL, Valnickova Z. et al. Insights into the molecular inactivation mechanism of human activated thrombin-activatable fibrinolysis inhibitor. J Thromb Haemost 2010; 08: 1056-1065.
  • 73 van Tilburg NH, Rosendaal FR, Bertina RM. Thrombin activatable fibrinolysis inhibitor and the risk for deep vein thrombosis. Blood 2000; 95: 2855-2859.
  • 74 Libourel EJ, Bank I, Meinardi JR. et al. Co-segregation of thrombophilic disorders in factor V Leiden carriers; the contributions of factor VIII, factor XI, thrombin activatable fibrinolysis inhibitor and lipoprotein(a) to the absolute risk of venous thromboembolism. Haematologica 2002; 87: 1068-1073.
  • 75 Silveira A, Schatteman K, Goossens F. et al. Plasma Procarboxypeptidase U in Men with Symptomatic Coronary Artery Disease. Thromb Haemost 2000; 84: 364-368.
  • 76 Lau HK, Segev A, Hegele RA. et al. Thrombin-activatable fibrinolysis inhibitor (TAFI): a novel predictor of angiographic coronary restenosis. Thromb Haemost 2003; 90: 1187-1191.
  • 77 Morange PE, Juhan-Vague I, Scarabin PY. et al. Association between TAFI antigen and Ala 147Thr polymorphism of the TAFI gene and the angina pectoris incidence – The PRIME Study. Thromb Haemost 2003; 89: 554-560.
  • 78 Juhan-Vague I, Morange PE. Very high TAFI antigen levels are associated with a lower risk of hard coronary events: the PRIME Study. J Thromb Haemost 2003; 01: 2243-2244.
  • 79 Schatteman KA, Goossens FJ, Scharpe SS. et al. Assay of procarboxypeptidase U, a novel determinant of the fibrinolytic cascade, in human plasma. Clin Chem 1999; 45: 807-813.
  • 80 Juhan-Vague I, Renucci JF, Grimaux M. et al. Thrombin-activatable fibrinolysis inhibitor antigen levels and cardiovascular risk factors. Arterioscler Thromb Vasc Biol 2000; 20: 2156-2161.
  • 81 Strömqvist M, Schatteman K, Leurs J. et al. Immunological assay for the determination of procarboxypeptidase U antigen levels in human plasma. Thromb Haemost 2001; 85: 12-17.
  • 82 Muto Y, Suzuki K, Sato E. et al. Carboxypeptidase B inhibitors reduce tissue factor-induced renal microthrombi in rats. Eur J Pharmacol 2003; 461: 181-189.
  • 83 Ceresa E, Brouwers E, Peeters M. et al. Development of ELISAs measuring the extent of TAFI activation. Arterioscler Thromb Vasc Biol 2006; 26: 423-428.
  • 84 Tregouet DA, Schnabel R, Alessi MC. et al. Activated thrombin activatable fibrinolysis inhibitor levels are associated with the risk of cardiovascular death in patients with coronary artery disease: the Athero-Gene study. J Thromb Haemost 2009; 07: 49-57.
  • 85 Ladenvall C, Gils A, Jood K. et al. Thrombin activatable fibrinolysis inhibitor activation peptide shows association with all major subtypes of ischemic stroke and with TAFI gene variation. Arterioscler Thromb Vasc Biol 2007; 27: 955-962.
  • 86 Emonts M, De Bruijne ELE, Guimaraes AHC. et al. Thrombin activatable fibrinolysis inhibitor is associated with severity and outcome of severe meningococcal infection in children. J Thromb Haemost 2008; 06: 268-276.
  • 87 Zirlik A. TAFI: a promising drug target?. Thromb Haemost 2004; 91: 420-422.
  • 88 Heylen E, Willemse J, Hendriks D. An update on the role of carboxypeptidase U (TAFIa) in fibrinolysis. Front Biosci 2011; 17: 2427-2450.
  • 89 Nordt TK, Bode C. Thrombolysis: Newer thrombolytic agents and their role in clinical medicine. Heart 2003; 89: 1358-1362.
  • 90 Klement P, Liao P, Bajzar L. A novel approach to arterial thrombolysis. Blood 1999; 94: 2735-2743.
  • 91 Nagashima M, Werner M, Wang M. et al. An inhibitor of activated thrombin-activatable fibrinolysis inhibitor potentiates tissue-type plasminogen activator-induced thrombolysis in a rabbit jugular vein thrombolysis model. Thromb Res 2000; 98: 333-342.
  • 92 Suzuki K, Muto Y, Fushihara K. et al. Enhancement of fibrinolysis by EF6265[(S)-7-amino-2-[[[(R)-2-methyl-1-(3-phenylpropanoylamino)propyl]hydroxyphosphinoyl]methyl]heptanoic acid], a specific inhibitor of plasma carboxypeptidase B. J Pharmacol Exp Ther 2004; 309: 607-615.
  • 93 Nagashima M, Yin ZF, Zhao L. et al. Thrombin-activatable fibrinolysis inhibitor (TAFI) deficiency is compatible with murine life. J Clin Invest 2002; 109: 101-110.
  • 94 Wang XK, Smith PL, Hsu MY. Deficiency in thrombin-activatable fibrinolysis inhibitor (TAFI) protected mice from ferric chloride-induced vena cava thrombosis. J Thromb Thrombolysis 2007; 23: 41-49.
  • 95 Mao SS, Holahan MA, Bailey C. et al. Demonstration of enhanced endogenous fibrinolysis in thrombin activatable fibrinolysis inhibitor-deficient mice. Blood Coagul Fibrinolysis 2005; 16: 407-415.
  • 96 Minnema MC, Friederich PW, Levi M. et al. Enhancement of rabbit jugular vein thrombolysis by neutralization of factor XI – In vivo evidence for a role of factor XI as an anti-fibrinolytic factor. J Clin Invest 1998; 101: 10-14.
  • 97 Broze GJ, Higuchi DA. Coagulation-dependent inhibition of fibrinolysis: Role of carboxypeptidase-U and the premature lysis of clots from hemophilic plasma. Blood 1996; 88: 3815-23.
  • 98 Mosnier LO, Lisman T, van den Berg HM. et al. The defective down regulation of fibrinolysis in haemophilia A can be restored by increasing the TAFI plasma concentration. Thromb Haemost 2001; 86: 1035-1039.
  • 99 Lisman T, Mosnier LO, Lambert T. et al. Inhibition of fibrinolysis by recombinant factor VIIA in plasma from patients with severe hemophilia A. Blood 2002; 99: 175-179.