Hamostaseologie 2011; 31(03): 174-178
DOI: 10.5482/ha-1159
Review
Schattauer GmbH

Factor VII activating protease

Single nucleotide polymorphisms light the wayFaktor-VII-aktivierende ProteasePolymorphismen weisen den Weg
S. M. Kanse
1   Institute for Biochemistry1, Justus-Liebig-University, Giessen
,
M. Etscheid
2   Paul Ehrlich Institute, Langen, Germany
› Author Affiliations
Further Information

Publication History

received: 12 May 2011

accepted in revised form: 26 May 2011

Publication Date:
28 December 2017 (online)

Summary

Factor VII activating protease (FSAP) is a circulating serine protease with high homology to fibrinolytic enzymes. A role in the regulation of coagulation and fibrinolysis is suspected based on in vitro studies demonstrating activation of FVII or pro-urokinase plasminogen activator (uPA). However, considering the paucity of any studies in animal models or any correlative studies in humans the role of FSAP in haemostasis remains unclear. In relation to vascular remodeling processes or inflammation it has been convincingly shown that FSAP interacts with growth factors as well as protease activated receptors (PAR). Against this sparse background there are a plethora of studies which have investigated the linkage of single nucleotide polymorphisms (SNP) in the FSAP gene (HABP2) to various diseases. The G534E SNP of FSAP is associated with a low proteolytic activity due to an amino acid exchange in the protease domain. This and other SNPs have been linked to carotid stenosis, stroke as well as thrombosis in the elderly and plaque calcification. These SNP analyses indicate an important role for FSAP in the regulation of the haemostasis system as well as fibroproliferative inflammatory processes.

Zusammenfassung

Die Faktor-VII-aktivierende Protease (FSAP) ist eine plasmatische Protease mit struktureller Ähnlichkeit zu Enzymen des fibrinolytischen Systems. In-vitro-Untersuchungen zeigten, dass Faktor VII und Prourokinase (sc-uPA) aktiviert werden und weisen auf eine regulierende Funktion von FSAP in Blutgerinnung und Fibrinolyse hin. Aus Mangel an Studien im Tiermodell und im Menschen bleibt die Rolle der FSAP in der Hämostase ungeklärt. Bei Vorgängen der Gefäßumbildung und bei Entzündungsprozessen konnte gezeigt werden, dass FSAP mit Wachstumsfaktoren und Proteaseaktivierten Rezeptoren (PAR) wechselwirkt. Der Zusammenhang zwischen Einzelnukleotid-Polymorphismen (SNP) im FSAP-Gen (HABP-2) und verschiedenen kardiovaskulären Erkrankungen wurde durch zahlreiche Studien belegt. Der G534E-Polymorphismus in der Proteasedomäne ist verbunden mit der Abschwächung oder dem Verlust proteolytischer Aktivität der FSAP. Dieser und andere SNPs wurden mit Schlaganfall und Karotisstenose in Verbindung gebracht sowie mit der Thromboseneigung bei älteren Patienten und der Kalzifizierung atherosklerotischer Plaques. Diese SNP-Analysen weisen auf eine wichtige Rolle der FSAP in der Regulierung des Hämostasesystems und bei fibroproliferativen Entzündungsvorgängen hin.

 
  • References

  • 1 Choi-Miura NH, Tobe T, Sumiya J. et al. Purification and characterization of a novel hyaluronan-binding protein (PHBP) from human plasma: It has three EGF, a kringle and a serine protease domain, similar to hepatocyte growth factor activator. J Biochem (Tokyo) 1996; 119: 1157-1165.
  • 2 Hunfeld A, Etscheid M, Konig H. et al. Detection of a novel plasma serine protease during purification of vitamin K-dependent coagulation factors. FEBS Lett 1999; 456: 290-294.
  • 3 Romisch J, Feussner A, Vermohlen S, Stohr HA. A protease isolated from human plasma activating factor VII independent of tissue factor. Blood Coagul Fibrinolysis 1999; 10: 471-479.
  • 4 Kannemeier C, Feussner A, Stohr HA. et al. Factor VII and single-chain plasminogen activator-activating protease: Activation and autoactivation of the proenzyme. Eur J Biochem 2001; 268: 3789-3796.
  • 5 Etscheid M, Hunfeld A, Konig H. et al. Activation of pro-PHBSP, the zymogen of a plasma hyaluronan binding serine protease, by an intermolecular autocatalytic mechanism. Biol Chem 2000; 381: 1223-1231.
  • 6 Sumiya J, Asakawa S, Tobe T. et al. Isolation and characterization of the plasma hyaluronan-binding protein (PHBP) gene (HABP2). J Biochem (Tokyo) 1997; 122: 983-990.
  • 7 Miyazawa K, Wang Y, Minoshima S. et al. Structural organization and chromosomal localization of the human hepatocyte growth factor activator gene-phylogenetic and functional relationship with blood coagulation factor XII, urokinase, and tissue-type plasminogen activator. Eur J Biochem 1998; 258: 355-361.
  • 8 Romisch J. Factor VII activating protease (FSAP): A novel protease in hemostasis. Biol Chem 2002; 383: 1119-1124.
  • 9 Kanse SM, Parahuleva M, Muhl L. et al. Factor VII-activating protease (FSAP): Vascular functions and role in atherosclerosis. Thromb Haemost 2008; 99: 286-289.
  • 10 Etscheid M, Kress J, Seitz R, Dodt J. The hyaluronic acid-binding protease: A novel vascular and inflammatory mediator?. Int Immunopharmacol 2008; 08: 166-170.
  • 11 Nakazawa F, Kannemeier C, Shibamiya A. et al. Extracellular RNA is a natural cofactor for the (auto-)activation of factor VII-activating protease (FSAP). Biochem J 2005; 385: 831-838.
  • 12 Altincicek B, Shibamiya A, Trusheim H. et al. A positively charged cluster in the epidermal growth factor-like domain of factor VII-activating protease (FSAP) is essential for polyanion binding. Biochem J 2006; 394: 687-692.
  • 13 Muhl L, Galuska SP, Oorni K. et al. High negative charge-to-size ratio in polyphosphates and heparin regulates factor VII-activating protease. FEBS J 2009; 276: 4828-4839.
  • 14 Choi-Miura NH, Takahashi K, Yoda M. et al. Proteolytic activation and inactivation of the serine protease activity of plasma hyaluronan binding protein. Biol Pharm Bull 2001; 24: 448-452.
  • 15 Etscheid M, Beer N, Seitz R, Dodt J. Regulation of the plasma hyaluronan binding serine protease. Ann Haematol 2002; 81: A16.
  • 16 Yamamichi S, Nishitani M, Nishimura N. et al. Polyamine-promoted autoactivation of plasma hyaluronan-binding protein, a serine protease involved in extracellular proteolysis. J Thromb Haemost 2010; 08: 559-566.
  • 17 Stephan F, Hazelzet JA, Bulder I. et al. Activation of factor VII-activating protease in human inflammation: A sensor for cell deathCrit. Care 2011; 15: R110.
  • 18 Choi-Miura NH, Saito K, Takahashi K. et al. Regulation mechanism of the serine protease activity of plasma hyaluronan binding protein. Biol Pharm Bull 2001; 24: 221-225.
  • 19 Romisch J, Vermohlen S, Feussner A, Stohr H. The FVII activating protease cleaves single-chain plasminogen activators. Haemostasis 1999; 29: 292-299.
  • 20 Wygrecka M, Morty RE, Markart P. et al. Plasminogen activator inhibitor-1 is an inhibitor of factor VII-activating protease in patients with acute respiratory distress syndrome. J Biol Chem 2007; 282: 21671-21682.
  • 21 Muhl L, Nykjaer A, Wygrecka M. et al. Inhibition of PDGF-BB by factor VII-activating protease (FSAP) is neutralized by protease nexin-1, and the FSAP-inhibitor complexes are internalized via LRP. Biochem J 2007; 404: 191-196.
  • 22 Yamamichi S, Fujiwara Y, Kikuchi T. et al. Extracellular histone induces plasma hyaluronan-binding protein (factor VII activating protease) activation in vivo. Biochem Biophys Res Commun. 2011 doi:10.1016/j.bbrc.2011.05.030.
  • 23 Etscheid M, Beer N, Fink E. et al. The hyaluronan-binding serine protease from human plasma cleaves HMW and LMW kininogen and releases bradykinin. Biol Chem 2002; 383: 1633-1643.
  • 24 Petaja J. Inflammation and coagulation. An overview. Thromb Res 2011; 127 (Suppl. 02) S34-37.
  • 25 Belting M, Ahamed J, Ruf W. Signaling of the tissue factor coagulation pathway in angiogenesis and cancer. Arterioscler Thromb Vasc Biol 2005; 25: 1545-1550.
  • 26 Sen P, Gopalakrishnan R, Kothari H. et al. Factor VIIa bound to endothelial cell protein C receptor activates protease activated receptor-1 and mediates cell signaling and barrier protection. Blood 2011; 117: 3199-3208.
  • 27 Schmaier AH. Assembly, activation, and physiologic influence of the plasma kallikrein/kinin system. Int Immunopharmacol 2008; 08: 161-165.
  • 28 Kress JA, Seitz R, Dodt J, Etscheid M. Induction of intracellular signalling in human endothelial cells by the hyaluronan-binding protease involves two distinct pathways. Biol Chem 2006; 387: 1275-1283.
  • 29 Etscheid M, Beer N, Kress JA. et al. Inhibition of bFGF/EGF-dependent endothelial cell proliferation by the hyaluronan-binding protease from human plasma. Eur J Cell Biol 2004; 82: 597-604.
  • 30 Jeon JW, Song HS, Moon EJ. et al. Anti-angiogenic action of plasma hyaluronan binding protein in human umbilical vein endothelial cells. Int J Oncol 2006; 29: 209-215.
  • 31 Kannemeier C, Al-Fakhri N, Preissner KT, Kanse SM. Factor VII activating protease (FSAP) inhibits growth factor-mediated cell proliferation and migration of vascular smooth muscle cells. Faseb J 2004; 18: 728-730.
  • 32 Sedding D, Daniel JM, Muhl L. et al. The G534E polymorphism of the gene encoding the factor VII-activating protease is associated with cardiovascular risk due to increased neointima formation. J Exp Med 2006; 203: 2801-2807.
  • 33 Mambetsariev N, Mirzapoiazova T, Mambetsariev B. et al. Hyaluronic acid binding protein 2 is a novel regulator of vascular integrity. Arterioscler Thromb Vasc Biol 2010; 30: 483-490.
  • 34 Mu E, Liu X, Chen S. et al. Changes in factor VII-activating protease in a bleomycin-induced lung injury rat model and its influence on human pulmonary fibroblasts in vitro. Int J Mol Med 2010; 26: 549-555.
  • 35 Wygrecka M, Markart P, Fink L. et al. Raised protein levels and altered cellular expression of factor VII activating protease (FSAP) in the lungs of patients with acute respiratory distress syndrome (ARDS). Thorax 2007; 62: 880-888.
  • 36 Etscheid M, Beer N, Dodt J. The hyaluronan-binding protease upregulates ERK1/2 and PI3k/AKT signalling pathways in fibroblasts and stimulates cell proliferation and migration. Cell Signal 2005; 17: 1486-1494.
  • 37 Shibamiya A, Muhl L, Tannert-Otto S. et al. Nucleic acids potentiate factor VII-activating protease (FSAP)-mediated cleavage of platelet-derived growth factor-BB and inhibition of vascular smooth muscle cell proliferation. Biochem J 2007; 404: 45-50.
  • 38 Parahuleva MS, Kanse SM, Parviz B. et al. Factor seven activating protease (FSAP) expression in human monocytes and accumulation in unstable coronary atherosclerotic plaques. Atherosclerosis 2008; 196: 164-171.
  • 39 Roemisch J, Feussner A, Nerlich C. et al. The frequent Marburg I polymorphism impairs the prourokinase activating potency of the factor VII activating protease (FSAP). Blood Coagul Fibrinolysis 2002; 13: 433-441.
  • 40 Willeit J, Kiechl S, Weimer T. et al. Marburg I polymorphism of factor VII-activating protease: A prominent risk predictor of carotid stenosis. Circulation 2003; 107: 667-670.
  • 41 Ireland H, Miller GJ, Webb KE. et al. The factor VII activating protease G511E (Marburg I) variant and cardiovascular risk. Thromb Haemost 2004; 92: 986-992.
  • 42 Trompet S, Pons D, Kanse SM. et al. Factor VII activating protease (FSAP) polymorphism (G534E) is associated with increased risk for stroke and mortality. Stroke Res Treat. 2011
  • 43 Gardener H, Beecham A, Cabral D. et al. Carotid plaque and candidate genes related to inflammation and endothelial function in Hispanics from northern Manhattan. Stroke 2011; 42: 889-896.
  • 44 Zakai NA, Lange L, Longstreth Jr WT. et al. Association of coagulation-related and inflammation-related genes and factor VIIc levels with stroke: The cardiovascular health study. J Thromb Haemost 2011; 09: 267-274.
  • 45 Hoppe B, Tolou F, Radtke H. et al. Marburg I polymorphism of factor VII-activating protease is associated with idiopathic venous thromboembolism. Blood 2005; 105: 1549-1551.
  • 46 Van Minkelen R, de Visser MC, Vos HL. et al. The Marburg I polymorphism of factor VII-activating protease is not associated with venous thrombosis. Blood 2005; 105: 4898.
  • 47 Gulesserian T, Hron G, Endler G. et al. Marburg I polymorphism of factor VII-activating protease and risk of recurrent venous thromboembolism. Thromb Haemost 2006; 95: 65-67.
  • 48 Franchi F, Martinelli I, Biguzzi E. et al. Marburg I polymorphism of factor VII-activating protease and risk of venous thromboembolism. Blood 2006; 107: 1731.
  • 49 Pecheniuk NM, Elias DJ, Xu X, Griffin JH. Failure to validate association of gene polymorphisms in EPCR, PAR-1, FSAP and Protein S Tokushima with venous thromboembolism among Californians of European ancestry. Thromb Haemost 2008; 99: 453-455.
  • 50 Weisbach V, Ruppel R, Eckstein R. The Marburg I polymorphism of factor VII-activating protease and the risk of venous thromboembolism. Thromb Haemost 2007; 97: 870-872.
  • 51 Reiner AP, Lange LA, Smith NL. et al. Common hemostasis and inflammation gene variants and venous thrombosis in older adults from the cardiovascular health study. J Thromb Haemost 2009; 07: 1499-1505.
  • 52 Wasmuth HE, Tag CG, Van de Leur E. et al. The Marburg I variant (G534E) of the factor VII-activating protease determines liver fibrosis in Hepatitis C infection by reduced proteolysis of platelet-derived growth factor BB. Hepatology 2009; 49: 775-780.