Synthesis 2021; 53(16): 2903-2910
DOI: 10.1055/a-1500-1407
paper

Unified Approach for the Total Synthesis of Bis-THF C15 Acetogenins: A Chloroenyne from Laurencia majuscula, Laurendecumenyne B and Laurefurenynes A/B

Sibadatta Senapati
a   Division of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
,
Nivedya A. Unmesh
a   Division of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
,
Manoj N. Shet
a   Division of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
,
Iram Ahmad
a   Division of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
,
Nandu Ajikumar
a   Division of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
,
a   Division of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
› Author Affiliations
Authors acknowledge CSIR for generous research funding and for a research fellowship to SS.


Abstract

A highly diastereoselective total synthesis of several bis-THF C15 acetogenin natural products, chloroenyne from Laurencia majuscula, laurendecumenyne B, and laurefurenynes A/B, is reported. Additionally the synthesis of an advanced intermediate reported in the earlier total synthesis of (E/Z)-elatenynes (formal synthesis) is described. The salient features in the synthesis include epoxide opening, Birch reduction, Sharpless asymmetric dihydroxylation-cycloetherification, SN2 halo­genation, and a relay cross metathesis.

Supporting Information

Primary Data



Publication History

Received: 09 April 2021

Accepted after revision: 05 May 2021

Accepted Manuscript online:
05 May 2021

Article published online:
02 June 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Wanke T, Philippus AC, Zatelli GA, Vieira LF. O, Lhullier C, Falkenberg M. Rev. Bras. Farmacogn. 2015; 25: 569
    • 1b Zhou ZF, Menna M, Cai Y.-S, Guo YW. Chem. Rev. 2015; 115: 1543
    • 1c Neske A, Hidalgo JR, Cabedo N, Cortes D. Phytochemistry 2020; 174: 112332
    • 1d Fernandes RA, Gorve DA, Pathare RS. Org. Biomol. Chem. 2020; 18: 7002
  • 3 Wright AD, König GM, Nys RD, Sticher O. J. Nat. Prod. 1993; 56: 394
  • 4 Abdel-Mageed WM, Ebel R, Valeriote FA, Jaspars M. Tetrahedron 2010; 66: 2855
    • 5a Fukuzawa A, Aye M, Nakamura M, Tamura M, Murai A. Tetrahedron Lett. 1990; 31: 4895
    • 5b Kikuchi H, Suzuki T, Kurosawa E, Suzuki M. Bull. Chem. Soc. Jpn. 1991; 64: 1763
    • 6a Sheldrake HM, Jamieson C, Burton JW. Angew. Chem. Int. Ed. 2006; 45: 7199
    • 6b Sheldrake HM, Jamieson C, Pascu SI, Burton JW. Org. Biomol. Chem. 2009; 7: 238
    • 6c Dyson BS, Burton JW, Sohn T.-i, Kim B, Bae H. J. Am. Chem. Soc. 2012; 134: 11781
  • 7 Shephard ED, Dyson BS, Hak WE, Nguyen QN. N, Lee M, Kim MJ, Sohn T.-i, Kim D, Burton JW, Paton RS. J. Org. Chem. 2019; 84: 4971
  • 8 Shepherd DJ, Broadwith PA, Dyson BS, Paton RS, Burton JW. Chem. Eur. J. 2013; 19: 12644
  • 9 Smith SG, Paton RS, Burton JW, Goodman JM. J. Org. Chem. 2008; 73: 4053
  • 10 Holmes MT, Britton R. Chem. Eur. J. 2013; 19: 12649
    • 11a Wang J, Tong R. Org. Chem. Front. 2017; 4: 140
    • 11b Chhetri BK, Lavoie S, Sweeny-Jones AM, Kubanek J. Nat. Prod. Rep. 2018; 35: 514
    • 12a Senapati S, Das S, Ramana CV. J. Org. Chem. 2018; 83: 12863
    • 12b Chan HS. S, Nguyen QN. N, Paton RS, Burton JW. J. Am. Chem. Soc. 2019; 141: 15951
    • 13a Mullapudi V, Ramana CV. Tetrahedron Lett. 2015; 56: 3933
    • 13b Das S, Ramana CV. Tetrahedron 2015; 71: 8577
  • 14 Mullapudi V, Ahmad I, Senapati S, Ramana CV. ACS Omega 2020; 5: 25334
  • 15 Kona CN, Ramana CV. Tetrahedron 2014; 70: 3653
  • 16 Marshall JA, Sabatini JJ. Org. Lett. 2005; 7: 4819
    • 17a Kozikowski AP, Sorgi KL. Tetrahedron Lett. 1982; 23: 2281
    • 17b Kozikowski AP, Sorgi KL, Wang BC, Xu ZB. Tetrahedron Lett. 1983; 24: 1563
    • 17c Gaertzen O, Misske AM, Wolbers P, Hoffmann HM. R. Synlett 1999; 1041
    • 17d Larsen CH, Ridgway BH, Shaw JT, Woerpel KA. J. Am. Chem. Soc. 1999; 121: 12208
    • 17e García-Tellado F, de Armas P, Marrero-Tellado JJ. Angew. Chem. Int. Ed. 2000; 39: 2727
    • 17f de Armas P, García-Tellado F, Marrero-Tellado JJ. Eur. J. Org. Chem. 2001; 2: 4423
    • 17g Ghosh R, Maity JK, Achari B, Mandal SB. J. Org. Chem. 2010; 75: 2419
  • 18 Shin I, Lee D, Kim H. Org. Lett. 2016; 18: 4420
    • 19a Garber SB, Kingsbury JS, Gray BL, Hoveyda AH. J. Am. Chem. Soc. 2000; 122: 8168
    • 19b Hansen EC, Lee D. Org. Lett. 2004; 6: 2035
    • 19c Kim H, Lee H, Lee D, Kim S, Kim D. J. Am. Chem. Soc. 2007; 129: 2269
    • 19d Cho EJ, Lee D. Org. Lett. 2008; 10: 257
    • 19e Yun SY, Kim M, Lee D, Wink DJ. J. Am. Chem. Soc. 2009; 131: 24
    • 19f Vougioukalakis GC, Grubbs RH. Chem. Rev. 2010; 110: 1746