Synthesis 2022; 54(10): 2423-2432
DOI: 10.1055/a-1731-2703
paper

N-Iodosuccinimide-Promoted Selective Construction of Cyclopropyl and Dihydrofuranyl Spirooxindoles from Alkylidene Oxindoles and Annular β-Dicarbonyl Compounds

Hong Chen
a   Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. of China
,
Hui Xu
a   Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. of China
,
Zeng-Yang He
b   Technology Center, China Tobacco Anhui Industrial Co., Ltd., 9 Tianda Road, Hefei 230088, P. R. of China
,
Peng Zou
b   Technology Center, China Tobacco Anhui Industrial Co., Ltd., 9 Tianda Road, Hefei 230088, P. R. of China
,
Fei-Hong Huang
a   Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. of China
,
Ying Jin
a   Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. of China
,
Ze Zhang
a   Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. of China
› Author Affiliations
This work was supported by the Natural Science Foundation of Anhui Province (2008085QB64), Foundation of Anhui Province Key Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources (LCECSC-15), Pre-research Project of National Natural Science Foundation of Anhui Polytechnic University (Xjky2020079, 2019yyzr09), Foundation of China Tobacco Anhui Industrial Corporation (2020146) and Foundation of China National Tobacco Corporation (11201903003).


Abstract

An efficient N-iodosuccinimide-promoted cyclization of readily available alkylidene oxindoles with annular β-dicarbonyl compounds has been demonstrated. With five-membered cyclic β-dicarbonyl compounds as the starting materials, a series of cyclopropyl oxindoles can be obtained in good to excellent yields, whereas the method affords dihydrofuranyl spirooxindoles almost quantitatively when six- or seven-membered cyclic β-dicarbonyl compounds are employed. This protocol provides a new alternative to the practical synthesis of structurally diverse spirooxindoles.

Supporting Information



Publication History

Received: 18 November 2021

Accepted after revision: 04 January 2022

Accepted Manuscript online:
04 January 2022

Article published online:
21 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Zheng Y, Tice CM, Singh SB. Bioorg. Med. Chem. Lett. 2014; 24: 3673

    • For reviews on the synthesis of spirooxindoles, see:
    • 2a Hong L, Wang R. Adv. Synth. Catal. 2013; 355: 1023
    • 2b Cao Z.-Y, Zhou J. Org. Chem. Front. 2015; 2: 849
    • 2c Bariwal J, Voskressensky LG, Van der Eycken EV. Chem. Soc. Rev. 2018; 47: 3831
    • 2d Boddy AJ, Bull JA. Org. Chem. Front. 2021; 8: 1026
    • 2e Saeed R, Sakla AP, Shankaraiah N. Org. Biomol. Chem. 2021; 19: 7768
    • 3a Jiang T, Kuhen KL, Wolff K, Yin H, Bieza K, Caldwell J, Bursulaya B, Wu TY.-H, He Y. Bioorg. Med. Chem. Lett. 2006; 16: 2105
    • 3b Jiang T, Kuhen KL, Wolff K, Yin H, Bieza K, Caldwell J, Bursulaya B, Tuntland T, Zhang K, Karanewsky D, He Y. Bioorg. Med. Chem. Lett. 2006; 16: 2109
    • 3c He Y, Jiang T, Kuhen KL, Ellis Y.-H, Wu B, Wu TY.-H, Bursulaya B. WO 2004037247A1, 2004
    • 4a Sampson PB, Liu Y, Li S.-W, Forrest BT, Pauls HW, Edwards LG, Feher M, Patel NK. B, Laufer R, Pan G. WO 2010115279A1, 2010
    • 4b Chen L, Feng L, He Y, Huang M, Yun H. WO 2011070039A1, 2011
    • 4c Pauls HW, Li S.-W, Sampson PB, Forrest BT. WO 2012048411A1, 2012
    • 5a Deshpande AM, Barawkar D, Patil S, Bankar D. WO 2016088903A1, 2016
    • 5b Okano T, Suzuki S. JP 2015193573A, 2015
    • 6a Alper PB, Meyers C, Lerchner A, Siegel DR, Carreira EM. Angew. Chem. Int. Ed. 1999; 38: 3186
    • 6b Wood JL, Holubec AA, Stoltz BM, Weiss MM, Dixon JA, Doan BD, Shamji MF, Chen JM, Heffron TP. J. Am. Chem. Soc. 1999; 121: 6326
    • 6c Marti C, Carreira EM. J. Am. Chem. Soc. 2005; 127: 11505
    • 6d Helan V, Mills A, Drewry D, Grant D. J. Org. Chem. 2010; 75: 6693
    • 7a Chowdhury S, Chafeev M, Liu S, Sun J, Raina V, Chui R, Young W, Kwan R, Fu J, Cadieux JA. Bioorg. Med. Chem. Lett. 2011; 21: 3676
    • 7b Gupta N, Bhojani G, Tak R, Jakhar A, Khan NH, Chatterjee S, Kureshy RI. ChemistrySelect 2017; 2: 10902
    • 7c Hu W, Teng S, Shi T, Wei Y. CN 105710031A, 2016

      For selected examples on the synthesis of cyclopropyl spirooxindoles, see:
    • 8a Cao Z.-Y, Wang X, Tan C, Zhao X.-L, Zhou J, Ding K. J. Am. Chem. Soc. 2013; 135: 8197
    • 8b Awata A, Arai T. Synlett 2013; 24: 29
    • 8c Noole A, Malkkov AV, Kanger T. Synthesis 2013; 45: 2520
    • 8d Zhang Z, Zhang Y, Huang G, Zhang G. Org. Chem. Front. 2017; 4: 1372
    • 8e Kuang Y, Shen B, Dai L, Yao Q, Liu X, Lin L, Feng X. Chem. Sci. 2018; 9: 688
    • 8f Hajra S, Roy S, Saleh SA. Org. Lett. 2018; 20: 4540
    • 8g Wang L, Cao W, Mei H, Hu L, Feng X. Adv. Synth. Catal. 2018; 360: 4089
    • 8h Song Y.-X, Du D.-M. Org. Biomol. Chem. 2019; 17: 5375
    • 8i Chen L, He J. J. Org. Chem. 2020; 85: 5203
    • 8j Zhang R.-Y, Jin F, Bao X.-G, Li H.-Y, Xu X.-P, Ji S.-J. J. Org. Chem. 2021; 86: 1141
    • 8k Pramanik S, Ray S, Maity S, Ghosh P, Mukhopadhyay C. Synthesis 2021; 53: 2240

      For selected examples on the synthesis of dihydrofuranyl spirooxindoles, see:
    • 9a Liu Y.-L, Wang X, Zhao Y.-L, Zhu F, Zeng X.-P, Chen L, Wang C.-H, Zhao X.-L, Zhou J. Angew. Chem. Int. Ed. 2013; 52: 13735
    • 9b Zhou R, Zhang K, Chen Y, Meng Q, Liu Y, Li R, He Z. Chem. Commun. 2015; 51: 14663
    • 9c Kumarswamyreddy N, Kesavan V. Eur. J. Org. Chem. 2016; 5301
    • 9d Miao Y.-H, Hua Y.-Z, Wang M.-C. Org. Biomol. Chem. 2019; 17: 7172
    • 9e Pan L.-N, Sun J, Shi R.-G, Yan C.-G. Org. Chem. Front. 2020; 7: 3202

      For selected examples, see:
    • 10a Li Y, Xu H, Xing M, Huang F, Jia J, Gao J. Org. Lett. 2015; 17: 3690
    • 10b Wang J.-Y, Zhou P, Li G, Hao W.-J, Tu S.-J, Jiang B. Org. Lett. 2017; 19: 6682
    • 10c Cao X, Cheng X, Xuan J. Org. Lett. 2018; 20: 449
    • 10d Kathuria D, Gupta P, Chourasiya SS, Sahoo SC, Beifuss U, Chakraborti AK, Bharatam PV. Org. Biomol. Chem. 2019; 17: 4129
    • 10e Xu H, Yu F, Huang R, Weng M, Chen H, Zhang Z. Org. Chem. Front. 2020; 7: 3368
    • 10f Feng J, He T, Xie Y, Yu Y, Baell JB, Huang F. Org. Biomol. Chem. 2020; 18: 9483
    • 10g He L, Yang Y, Liu X, Liang G, Li C, Wang D, Pan W. Synthesis 2020; 52: 459
    • 10h Li X, Zheng L, Gong X, Chang H, Gao W, Wei W. J. Org. Chem. 2021; 86: 1096
    • 10i Yu X.-X, Zhao P, Zhou Y, Huang C, Wang L.-S, Wu Y.-D, Wu A.-X. J. Org. Chem. 2021; 86: 12141
    • 10j Xu C, Yin G, Jia F.-C, Wu Y.-D, Wu A.-X. Org. Lett. 2021; 23: 2559
    • 11a Xu H, Liu H.-W, Lin H.-S, Wang G.-W. Chem. Commun. 2017; 53: 12477
    • 11b Xu H, Hong R, Weng M.-Y, Huang R.-L, Wang G.-W, Zhang Z. Org. Lett. 2021; 23: 5305
  • 12 Fang Q.-Y, Yi M.-H, Wu X.-X, Zhao L.-M. Org. Lett. 2020; 22: 5266
    • 13a Xu H, Chen K, Liu H.-W, Wang G.-W. Org. Chem. Front. 2018; 5: 2864
    • 13b Xu H, Huang R.-L, Shu Z, Hong R, Zhang Z. Org. Biomol. Chem. 2021; 19: 4978

      For selected examples, see:
    • 14a Gao W.-C, Hu F, Huo Y.-M, Chang H.-H, Li X, Wei W.-L. Org. Lett. 2015; 17: 3914
    • 14b Fan Y, He Y, Liu X, Hu T, Ma H, Yang X, Luo X, Huang G. J. Org. Chem. 2016; 81: 6820
    • 14c Usami K, Nagasawa Y, Yamaguchi E, Tada N, Itoh A. Org. Lett. 2016; 18: 8
    • 14d Guo Y.-J, Lu S, Tian L.-L, Huang E.-L, Hao X.-Q, Zhu X, Shao T, Song M.-P. J. Org. Chem. 2018; 83: 338
    • 14e Xia B, Chen W, Zhao Q, Yu W, Chang J. Org. Lett. 2019; 21: 2583
    • 14f Fang B, Hou J, Tian J, Yu W, Chang J. Org. Biomol. Chem. 2020; 18: 3312
    • 14g Alizadeh A, Bagherinejad A, Khanpour M. Synthesis 2021; 53: 4059
  • 15 CCDC 2109675 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 16 Penjarla TR, Kundarapu M, Rangan K, Bhattacharya A. Org. Biomol. Chem. 2020; 18: 9623
    • 17a Noole A, Sucman NS, Kabeshov MA, Kanger T, Macaev FZ, Malkov AV. Chem. Eur. J. 2012; 18: 14929
    • 17b Tang C.-K, Zhou Z.-Y, Xia A.-B, Bai L, Liu J, Xu D.-Q, Xu Z.-Y. Org. Lett. 2018; 20: 5840
    • 18a Banik BK, Fernandez M, Alvarez C. Tetrahedron Lett. 2005; 46: 2479
    • 18b Yin G, Fan L, Ren T, Zheng C, Tao Q, Wu A, She N. Org. Biomol. Chem. 2012; 10: 8877
    • 18c Ahmed N, Babu BV. Synth. Commun. 2013; 43: 3044
    • 18d von der Heiden D, Bozkus S, Klussmann M, Breugst M. J. Org. Chem. 2017; 82: 4037
    • 18e Takeda Y, Kajihara R, Kobayashi N, Noguchi K, Saito A. Org. Lett. 2017; 19: 6744
  • 19 Cao S.-H, Zhang X.-C, Wei Y, Shi M. Eur. J. Org. Chem. 2011; 2668