Synthesis 2022; 54(16): 3605-3612
DOI: 10.1055/a-1807-3188
paper

Flow Hydrogenation of 1,3,5-Trinitrobenzenes over Cu-Based Catalysts as an Efficient Approach for the Preparation of Phloroglucinol Derivatives

a   Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, Novosibirsk 630090, Russian Federation
,
Irina А. Shchurova
b   Institute for Problems of Chemical and Energetic Technologies SB RAS, Sotsialisticheskaja str. 1, Biysk 659322, Russian Federation
,
Marina V. Bukhtiyarova
a   Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, Novosibirsk 630090, Russian Federation
,
Olga A. Bulavchenko
a   Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, Novosibirsk 630090, Russian Federation
,
Natalia A. Alekseyeva
b   Institute for Problems of Chemical and Energetic Technologies SB RAS, Sotsialisticheskaja str. 1, Biysk 659322, Russian Federation
,
Sergey V. Sysolyatin
b   Institute for Problems of Chemical and Energetic Technologies SB RAS, Sotsialisticheskaja str. 1, Biysk 659322, Russian Federation
,
Galina A. Bukhtiyarova
a   Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, Novosibirsk 630090, Russian Federation
› Author Affiliations
This work was supported by the Russian Science Foundation (grant no. 22-23-00127).


Abstract

An environmentally friendly and safe synthesis of phloroglucinol and its derivatives through the flow hydrogenation of 1,3,5-trinitrobenzenes on heterogeneous copper catalysts is reported. It was found that hydrogenation of 1,3,5-trinitrobenzene, 2,4,6-trinitrotoluene, 2,4,6-trinitroxylene, and 2,4,6-trinitromesitylene in methanol over Cu–Al mixed oxides derived from layered double hydroxides led to selective formation of the corresponding triaminobenzenes, which were isolated from the reaction mixture in the form of double salts with sulfuric acid and were stable in storage. Subsequent hydrolysis in aqueous solution gave the phloroglucinol derivatives in good yields (75–82%).

Supporting Information



Publication History

Received: 02 March 2022

Accepted after revision: 23 March 2022

Accepted Manuscript online:
23 March 2022

Article published online:
17 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Teng X, Wang Y, Gu J, Shi P, Shen Zh, Ye L. Molecules 2018; 23: 3116
    • 1b Mittal N, Tesfu HH, Hogan AM, Cardona ST, Sorensen JL. J. Antibiot. 2019; 72: 253
    • 1c Verbanac D, Jain SC, Jain N, Chand M, Paljetak HC, Matijašic M, Peric M, Stepanic V, Saso L. Bioorg. Med. Chem. 2012; 20: 3180
    • 1d Sun Q, Schmidt S, Tremmel M, Heilmann J, Konig B. Eur. J. Med. Chem. 2014; 85: 621
    • 1e Li N, Khan SI, Qiu S, Li X.-C. Molecules 2018; 23: 3232
    • 1f Shi L, Feng XE, Cui JR, Fang LH, Du GH, Li QS. Bioorg. Med. Chem. Lett. 2010; 20: 5466
    • 1g Liu JN, Ban SR, Xie HY, Li QS. Chin. Chem. Lett. 2012; 23: 907
    • 1h Lee H, Park RY, Park K. Bull. Korean Chem. Soc. 2021; 42: 66
    • 1i Jung JW, Damodar K, Kim JK, Jun JG. Chin. Chem. Lett. 2017; 28: 1114
    • 1j Abdel-Ghany SE, Day I, Heuberger AL, Broeckling CD, Reddy AS.N. Sci. Rep. 2016; 6: 38483
    • 1k Fiege H, Voges HW, Hamamoto T, Umemura S, Iwata T, Miki H, Fujita Y, Buysch HJ, Garbe D, Paulus W. Phenol derivatives . In Ullmann’s Encyclopedia of Industrial Chemistry, Vol. 26. Wiley-VCH; Weinheim: 2012: 557
    • 2a Kastens ML, Kaplan JF. Ind. Eng. Chem. 1950; 42: 402
    • 2b Ushkarov VI, Kobrakov KI, Alafinov AI, Shevelev SA, Shakhnes AKh. Theor. Found. Chem. Eng. 2007; 41: 671
    • 3a Blaser H.-U, Steiner H, Studer M. ChemCatChem 2009; 1: 210
    • 3b Formenti D, Ferretti F, Scharnagl FK, Beller M. Chem. Rev. 2019; 119: 2611
    • 3c Cardenas-Lizana F, Keane MA. J. Mater. Sci. 2013; 48: 543
    • 4a Kürschner U, Ehwald H, Alscher G. Catal. Lett. 1995; 34: 191
    • 4b Belskaya OB, Mironenko RM, Talsi VP, Rodionov VA, Sysolyatin SV, Likholobov VA. J. Mol. Catal. A: Chem 2016; 420: 190
    • 4c Belskaya OB, Mironenko RM, Talsi VP, Rodionov VA, Gulyaeva TI, Sysolyatin SV, Likholobov VA. Catal. Today 2018; 301: 258
    • 4d Kashaev VA, Khisamutdinov GKh, Shevelev SA, Valeshnii SI, Shakhnes AKh, Bavrina AP. Theor. Found. Chem. Eng. 2008; 42: 650
    • 4e Scholles H, Luebben M, Reichelt K, Kluger K, Niehoff W. DE Patent 4131471, 1993
    • 4f van Gelder KB, Damhof JK, Kroijenga PJ, Westerterp KR. Chem. Eng. Sci. 1990; 45: 3159
    • 4g Halcour K, Schwerdtel W, Swodenk W, Thelen H. DE Patent 2135154, 1973
    • 4h Temme O, Dickner T, Laschat S, Fröhlich R, Kotila S, Bergander K. Eur. J. Org. Chem. 1998; 651
    • 4i Kim HJ, Lee WS. WO Patent 2007126262, 2007
    • 4j Schuster L. DE Patent 3218665, 1981
    • 4k Shchurova IA, Alekseyeva NA, Sysolyatin SV, Malykhin VV. South-Siberian Sci. Bull. 2021; 40: 143
    • 4l Shchurova IA, Alekseyeva NA, Sysolyatin SV, Malykhin VV. South-Siberian Sci. Bull. 2021; 40: 148
    • 5a Downing RS, Kunkeler PJ, van Bekkum H. Catal. Today 1997; 37: 121
    • 5b Nuzhdin AL, Artiukha EA, Bukhtiyarova GA, Derevyannikova EA, Bukhtiyarov VI. Catal. Commun. 2017; 102: 108
    • 6a Yu T, Jiao J, Song P, Nie W, Yi C, Zhang Q, Li P. ChemSusChem 2020; 13: 2876
    • 6b Masuda K, Ichitsuka T, Koumura N, Sato K, Kobayashi S. Tetrahedron 2018; 74: 1705
    • 6c De Risi C, Bortolini O, Brandolese A, Di Carmine G, Ragno D, Massi A. React. Chem. Eng. 2020; 5: 1017
    • 7a De Roy A, Forano C, Besse J.-P. Layered Double Hydroxides: Synthesis and Postsynthesis Modification. In Layered Double Hydroxides: Present and Future. Rives V. Nova Science Publishers; New York: 2001: 1
    • 7b Bukhtiyarova MV. J. Solid State Chem. 2019; 269: 494
    • 8a Kumalaputri AJ, Bottari G, Erne PM, Heeres HJ, Barta K. ChemSusChem 2014; 7: 2266
    • 8b Kühl S, Friedrich M, Armbrüster M, Behrens M. J. Mater. Chem. 2012; 22: 9632
    • 8c Nuzhdin AL, Bukhtiyarova MV, Bukhtiyarova GA. J. Chem. Technol. Biotechnol. 2020; 95: 3292
    • 8d Nuzhdin AL, Bukhtiyarova MV, Bulavchenko OA, Bukhtiyarova GA. Mol. Catal. 2020; 494: 111132
    • 8e Nuzhdin AL, Bukhtiyarova MV, Bukhtiyarov VI. Molecules 2020; 25: 4771
    • 8f Nuzhdin AL, Bukhtiyarova MV, Eltsov IV, Bukhtiyarov VI. Mendeleev Commun. 2021; 31: 813
    • 9a Li Y, Wang J, Chen J, Wang J, Chai X, Li M, Fang K, Cao D, Zhao L, Chen L. CN Patent 10877077A, 2018
    • 9b Xu J, Wei J, Li F, Ma Q, Peng X. New J. Chem. 2014; 38: 5303
    • 9c Risch N. Chem. Ber. 1985; 118: 4849
    • 9d Clarke HT, Hartman WW. Org. Synth., Coll. Vol. 1 1941; 543
  • 10 Talsi VP, Belskaya OB, Yurpalov VL. Magn. Reson. Chem. 2020; 58: 84