CC BY-NC-ND 4.0 · Organic Materials 2023; 5(01): 48-58
DOI: 10.1055/a-1972-5978
Original Article

Broadly Applicable Synthesis of Heteroarylated Dithieno[3,2-b:2′,3′-d]pyrroles for Advanced Organic Materials – Part 2: Hole-Transporting Materials for Perovskite Solar Cells

a   Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
,
Christoph Lorenz
b   Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
,
Astrid Vogt
b   Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
,
a   Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
,
a   Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
,
a   Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
,
b   Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
,
a   Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
,
a   Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
› Institutsangaben


Abstract

Functionalization of heteroarylated dithieno[3,2-b:2′,3′-d]pyrroles (DTPs) by triarylamines was elaborated to result in novel hole-transport materials (HTMs) for perovskite solar cells. The new HTMs showed promising photovoltaic performance with efficiencies exceeding 18%. A thorough investigation of the electronic and optoelectronic properties revealed that the main efficiency loss mechanisms are not related to the pristine HTM materials but to the suboptimal interface passivation and HTM doping. We provide an optimization strategy for those device fabrication factors, which could render these new materials a potential replacement of current state-of-the-art HTMs.



Publikationsverlauf

Eingereicht: 12. August 2022

Angenommen nach Revision: 27. Oktober 2022

Accepted Manuscript online:
04. November 2022

Artikel online veröffentlicht:
27. Januar 2023

© 2023. The authors. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Lorenz C, Vogt A, Millan J, Mena-Osteritz E, Bäuerle P. Org. Mater. 2023; 5: 35
  • 2 Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc. 2009; 131: 6050
  • 3 Best Research-Cell Efficiencies. Zugriff am 11. November 2022 unter: https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev220126b.pdf
  • 4 Leguy AMA, Frost JM, McMahon AP, Sakai VG, Kochelmann W, Law C, Li X, Foglia F, Walsh A, OʼRegan BC, Nelson J, Cabral JT, Barnes PRF. Nat. Commun. 2015; 6: 1
  • 5 Li W, Wang Z, Deschler F, Gao S, Friend RH, Cheetham AK. Nat. Rev. Mater. 2017; 2: 1
  • 6 Li Y, Zhou Liu F, Waqas M, Lun Leung T, Won Tam H, Qi Lan X, Tu B, Chen W, Djurišic AB, Bing He Z. Small Methods 2018; 2: 1700387
  • 7 Ji LJ, Sun SJ, Qin Y, Li K, Li W. Coord. Chem. Rev. 2019; 391: 15
  • 8 Juarez-Perez EJ, Wuβler M, Fabregat-Santiago F, Lakus-Wollny K, Mankel E, Mayer T, Jaegermann W, Mora-Sero I. J. Phys. Chem. Lett. 2014; 5: 680
  • 9 Park N-G. Mater. Today 2015; 18: 65
  • 10 Zhang WEI, Saliba M, Stranks SD, Sun Y, Shi X, Wiesner U, Snaith HJ. Nano Lett. 2013; 13: 4505
  • 11 Ponseca Jr CS, Savenije TJ, Abdellah M, Zheng K, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A. J. Am. Chem. Soc. 2014; 136: 5189
  • 12 Xing G, Mathews N, Sun S, Lim SS, Lam YM, Grätzel M, Mhaisalkar S, Sum TC. Science 2013; 342: 344
  • 13 Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, Herz LM, Petrozza A, Snaith HJ. Science 2013; 342: 341
  • 14 Constantinos S, Christos M, Mercouri K. Inorg. Chem. 2013; 52: 9019
  • 15 Yoo JJ, Seo G, Chua MR, Park TG, Lu Y, Rotermund F, Kim Y-K, Moon CS, Jeon NJ, Correa-Baena J-P, Bulović V, Shin SS, Bawendi MG, Seo J. Nature 2021; 590: 587
  • 16 Kim M, Jeong J, Lu H, Lee TK, Eickemeyer FT, Liu Y, Choi IW, Choi SJ, Jo Y, Kim HB, Mo SI, Kim YK, Lee H, An NG, Cho S, Tress WR, Zakeeruddin SM, Hagfeldt A, Kim JY, Grätzel M, Kim DS. Science 2022; 375: 302
  • 17 Bauer M, Zhu H, Baumeler T, Liu Y, Eickemeyer FT, Lorenz C, Mena-Osteritz E, Hertel D, Olthof S, Zakeeruddin SM, Meerholz K, Grätzel M, Bäuerle P. Adv. Energy Mater. 2021; 11: 2003953
  • 18 Murugan P, Hu T, Hu X, Chen YJ. Mater. Chem. A 2022; 10: 5044
  • 19 Nakka L, Cheng Y, Aberle AG, Lin F. Adv. Energy Sustainability Res. 2022; 3: 2200045
  • 20 Cheng F, Cao F, Fan FR, Wu B. ChemSusChem 2022; 2022: e202200340
  • 21 Mahajan P, Padha B, Verma S, Gupta V, Datt R, Tsoi WC, Satapathi S, Arya S. J. Energy Chem. 2022; 68: 330
  • 22 Zhang X, Steckler TT, Dasari RR, Ohira S, Potscavage WJ, Tiwari SP, Coppée S, Ellinger S, Barlow S, Brédas J-L, Kippelen B, Reynolds JR, Marder SR. J. Mater. Chem. 2010; 20: 123
  • 23 Lu H-I, Lu C-W, Lee Y-C, Lin H-W, Lin L-Y, Lin F, Chang J-H, Wu C-I, Wong K-T. Chem. Mater. 2014; 26: 4361
  • 25 Yin X, Zhou J, Song Z, Dong Z, Bao Q, Shrestha N, Bista SS, Ellingson RJ, Yan Y, Tang W. Adv. Funct. Mater. 2019; 29: 1904300
  • 26 Cao J, Du F, Yang L, Tang W. J. Mater. Chem. A 2020; 8: 22572
  • 27 Sandoval-Torrientes R, Zimmermann I, Calbo J, Aragó J, Santos J, Ortí E, Martín N, Nazeeruddin MK. J. Mater. Chem. A 2018; 6: 5944
  • 28 Wu B, Fu Q, Sun L, Liu Y, Sun Z, Xue S, Liu Y, Liang M. ACS Energy Lett. 2022; 7: 2667
  • 29 Vogt A, Schwer F, Förtsch S, Lorenz C, Mena-Osteritz E, Aubele A, Kraus T, Bäuerle P. Chem. Eur. J. 2021; 27: 12362
  • 30 Leijtens T, Ding IK, Giovenzana T, Bloking JT, McGehee MD, Sellinger A. ACS Nano 2012; 6: 1455
  • 31 Li H, Lambert C. Chem. Eur. J. 2006; 12: 1144
  • 32 Saliba M, Matsui T, Seo J-Y, Domanski K, Correa-Baena J-P, Nazeeruddin MK, Zakeeruddin SM, Tress W, Abate A, Hagfeldt A, Grätzel M. Energy Environ. Sci. 2016; 9: 1989
  • 33 Bai S, Da P, Li C, Wang Z, Yuan Z, Fu F, Kawecki M, Liu X, Sakai N, Wang JT-W, Huettner S, Buecheler S, Fahlman M, Gao F, Snaith HJ. Nature 2019; 571: 245
  • 34 Zhu H, Liu Y, Eickemeyer FT, Pan L, Ren D, Ruiz-Preciado MA, Carlsen B, Yang B, Dong X, Wang Z, Liu H, Wang S, Zakeeruddin SM, Hagfeldt A, Dar MI, Li X, Grätzel M. Adv. Mater. 2020; 32: 1907757
  • 35 Tang S, Huang S, Wilson GJ, Ho-Baillie A. Trends Chem. 2020; 2: 638
  • 36 Kim M, Kim GH, Lee TK, Choi IW, Choi HW, Jo Y, Yoon YJ, Kim JW, Lee Y, Huh D, Lee H, Kwak SK, Kim JY, Kim DS. Joule 2019; 3: 2179
  • 37 Lu H, Liu Y, Ahlawat P, Mishra A, Tress WR, Eickemeyer FT, Yang Y, Fu F, Wang Z, Avalos CE, Carlsen BI, Agarwalla A, Zhang X, Zhan Y, Zakeeruddin SM, Emsley L, Rothlisberger U, Zheng L, Hagfeldt A, Grätzel M. Science 2020; 370: eabb8985
  • 38 Yuan R, Cai B, Li Y, Gao X, Gu Y, Fan Z, Liu X, Yang C, Liu M, Zhang W-H. Energy Environ. Sci. 2021; 14: 5074
  • 39 Guo P, Zhu H, Zhao W, Liu C, Zhu L, Ye Q, Jia N, Wang H, Zhang X, Huang W, Vinokurov VA, Ivanov E, Shchukin D, Harvey D, Ulloa JM, Hierro A, Wang H. Adv. Mater. 2021; 33: 2101590
  • 40 Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope MA, Eickemeyer FT, Kim M, Yoon YJ, Choi IW, Darwich BP, Choi SJ, Jo Y, Lee JH, Walker B, Zakeeruddin SM, Emsley L, Rothlisberger U, Hagfeldt A, Kim DS, Grätzel M, Kim JY. Nature 2021; 592: 381
  • 41 Kirchartz T, Márquez JA, Stolterfoht M, Unold T. Adv. Energy Mater. 2020; 10: 1904134
  • 42 Ross RT. J. Chem. Phys. 1967; 46: 4590
  • 43 Caprioglio P, Stolterfoht M, Wolff CM, Unold T, Rech B, Albrecht S, Neher D. Adv. Energy Mater. 2019; 9: 1901631
  • 44 Tress W. Maximum Efficiency and Open-Circuit Voltage of Perovskite Solar Cells. Park N-G, Gratzel M, Miyasaka T. Organic-Inorganic Halide Perovskite Photovoltaics. Springer; Berlin: 2016: 53
  • 45 Marinova N, Tress W, Humphry-Baker R, Dar MI, Bojinov V, Zakeeruddin SM, Nazeeruddin MK, Grätzel M. ACS Nano 2015; 9: 4200
  • 46 Correa-Baena J-P, Tress W, Domanski K, Anaraki EH, Turren-Cruz S-H, Roose B, Boix PP, Grätzel M, Saliba M, Abate A. Energy Environ. Sci. 2017; 10: 1207
  • 47 Do Kim H, Ohkita H. Sol. RRL 2017; 1: 1700027
  • 48 Wu N, Wu Y, Walter D, Shen H, Duong T, Grant D, Barugkin C, Fu X, Peng J, White T, Catchpole K, Weber K. Energy Technol. 2017; 5: 1827
  • 49 Ma C, Park N-G. Chem 2020; 6: 1254
  • 50 Abate A, Leijtens T, Pathak S, Teuscher J, Avolio R, Errico ME, Kirkpatrik J, Ball JM, Docampo P, McPherson I, Snaith HJ. Phys. Chem. Chem. Phys. 2013; 15: 2572
  • 51 Liu Q, Fan L, Zhang Q, Zhou A, Wang B, Bai H, Tian Q, Fan B, Zhang T. ChemSusChem 2017; 10: 3098
  • 52 Wang D, Chen S-C, Zheng Q. J. Mater. Chem. A 2021; 9: 11778
  • 53 Burschka J, Dualeh A, Kessler F, Baranoff E, Cevey-Ha N-L, Yi C, Nazeeruddin MK, Grätzel M. J. Am. Chem. Soc. 2011; 133: 18042
  • 54 Snaith HJ, Grätzel M. Appl. Phys. Lett. 2006; 89: 262114
  • 55 Li Z, Tinkham J, Schulz P, Yang M, Kim DH, Berry J, Sellinger A, Zhu K. Adv. Energy Mater. 2017; 7: 1601451
  • 56 Wang S, Yuan W, Meng YS. ACS Appl. Mater. Interfaces 2015; 7: 24791
  • 57 Fabregat-Santiago F, Bisquert J, Cevey L, Chen P, Wang M, Zakeeruddin SM, Grätzel M. J. Am. Chem. Soc. 2009; 131: 558
  • 58 Ulfa M, Pauporté T, Bui T-T, Goubard F. J. Phys. Chem. C 2018; 122: 11651
  • 59 Tan B, Raga SR, Chesman ASR, Fürer SO, Zheng F, McMeekin DP, Jiang L, Mao M, Lin X, Wen X, Lu J, Cheng Y-B, Bach U. Adv. Energy Mater. 2019; 9: 1901519
  • 60 Forward RL, Chen KY, Weekes DM, Dvorak DJ, Cao Y, Berlinguette CP. ACS Energy Lett. 2019; 4: 2547
  • 61 Tan B, Raga SR, Rietwyk KJ, Lu J, Fürer SO, Griffith JC, Cheng Y-B, Bach U. Nano Energy 2021; 82: 105658
  • 62 Yang S, Chen S, Mosconi E, Fang Y, Xiao X, Wang C, Zhou Y, Yu Z, Zhao J, Gao Y, De Angelis F, Huang J. Science 2019; 365: 473
  • 63 Kim H, Lee S-U, Lee DY, Paik MJ, Na H, Lee J, Il Seok S. Adv. Energy Mater. 2019; 9: 1902740
  • 64 Krishna A, Zhang H, Zhou Z, Gallet T, Dankl M, Ouellette O, Eickemeyer FT, Fu F, Sanchez S, Mensi M, Zakeeruddin SM, Rothlisberger U, Reddy GNM, Redinger A, Grätzel M, Hagfeldt A. Energy Environ. Sci. 2021; 14: 5552
  • 65 Kim H-S, Lee C-R, Im J-H, Lee K-B, Moehl T, Marchioro A, Moon S-J, Humphry-Baker R, Yum J-H, Moser JE, Grätzel M, Park N-G. Sci. Rep. 2012; 2: 1
  • 66 Urieta-Mora J, García-Benito I, Molina-Ontoria A, Martín N. Chem. Soc. Rev. 2018; 47: 8541
  • 67 Gao P, Cho D, Yang X, Enkelmann V, Baumgarten M, Müllen K. Chem. Eur. J. 2010; 16: 5119