Synthesis 2023; 55(18): 3033-3039
DOI: 10.1055/a-2006-1285
paper
Special Issue Electrochemical Organic Synthesis

Electrochemical Synthesis of trans-Olefins from Buta-1,3-dienes and Alkyl Halides

Haoxiang Zhang
a   State Key Lab of Urban Water Resources and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, P. R. of China
,
Lin Guo
a   State Key Lab of Urban Water Resources and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, P. R. of China
,
Chao Yang
a   State Key Lab of Urban Water Resources and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, P. R. of China
,
Wujiong Xia
a   State Key Lab of Urban Water Resources and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, P. R. of China
b   School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. of China
› Author Affiliations
We are grateful for the financial support from the Science and Technology­ Planning Project of Shenzhen Municipality (No. JCYJ20210324133001004 and JCYJ20210324132803009), the Natural Science Foundation of Guangdong Province (No. 2020A1515010564), and Basic and Applied Basic Research Foundation of Guangdong Province (No. 2021A1515220069). W.X. is grateful for the Guangdong Pearl River Talents Program and the financial support from Guangdong Province Covid-19 Pandemic Control Research Fund (No. 2020KZDZX1218). The project was also supported by State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology) (No.2022TS24), and the Open Research Fund of the School of Chemistry and Chemical Engineering, Henan Normal University.


Abstract

A facile electrochemical alkylation reaction of buta-1,3-diene derivatives with alkyl halides has been developed, generating highly selective trans-olefins as major products. This method exhibits significant advantages, including simple operation, mild conditions, and convenience of scale-up, and provides a novel route for the synthesis of trans-olefins.

Supporting Information



Publication History

Received: 30 November 2022

Accepted after revision: 03 January 2023

Accepted Manuscript online:
03 January 2023

Article published online:
01 February 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Posner GH. Chem Rev 1986; 86: 831
  • 3 Armstrong RW, Combs AP, Tempest PA, Brown SD, Keating TA. Acc. Chem. Res. 1996; 29: 123
    • 4a Smutny EJ. J. Am. Chem. Soc. 1967; 89: 6793
    • 4b Takahashi S, Shibano T, Hagihara N. Tetrahedron Lett. 1967; 8: 2451
    • 4c Mitsuyasu T, Hara M, Tsuji J. Chem. Commun. 1971; 345
    • 4d Hata G, Takahashi K, Miyake A. J. Org. Chem. 1971; 36: 2116
    • 4e Baker R, Halliday DE, Smith TM. J. Organomet. Chem. 1972; 35
    • 4f Behr A, Becker M, Beckmann T, Johnen L, Leschinski J, Reyer S. Angew. Chem. Int. Ed. 2009; 48: 3598
    • 4g Baker R. Chem. Rev. 1973; 73: 487
    • 4h Keim W. Angew. Chem. Int. Ed. 1990; 29: 235
    • 4i Sieburth SM, Cunard NT. Tetrahedron 1996; 52: 6251
    • 4j Lautens M, Klute W, Tam W. Chem. Rev. 1996; 96: 49
    • 4k Badart MP, Hawkins BC. Synthesis 2021; 53: 1683
    • 4l Wu X, Gong LZ. Synthesis 2019; 51: 122
    • 4m Wu Z, Zhang W. Chin. J. Org. Chem. 2017; 37: 2250
    • 4n Xiong Y, Sun Y, Zhang G. Tetrahedron Lett. 2018; 59: 347
    • 4o Li G, Huo X, Jiang X, Zhang W. Chem. Soc. Rev. 2019; 49: 2060
    • 4p McNeill E, Ritter T. Acc. Chem. Res. 2015; 48: 2330
    • 4q Mizutani K, Shinokubo H, Oshima K. Org. Lett. 2003; 5: 3959
  • 5 Iwasaki T, Shimizu R, Imanishi R, Kuniyasu H, Kambe N. Angew. Chem. Int. Ed. 2015; 54: 9347
    • 6a Mayr H, Striepe W. J. Org. Chem. 1983; 48: 1159
    • 6b Roy K.-M. In Science of Synthesis, Vol. 35. Schaumann E. Thieme; Stuttgart: 2007: 361
    • 6c Herbert M, Herbert K. Chem. Ber. 1982; 11: 3528
    • 7a Luca J, Huang H, Glorius F, Paulisch T. ACS Catal. 2020; 10: 1621
    • 7b Pinkert T, Wegner T, Mondal S, Glorius F. Angew. Chem. Int. Ed. 2019; 58: 15041
    • 7c Bellotti P, Koy M, Gutheil C, Heuvel S. Glorius F. 2021; 12: 1810
    • 7d Huang H, Koy M, Serrano E, Pflüger P, Schwarz J, Glorius F. Nat. Catal. 2020; 3: 393
    • 7e Huang H, Bellotti P, Kim S, Zhang X. Nat. Synth. 2022; 1: 464
    • 8a Chen J, Liang Y, Wang P, Li G, Zhang B, Qian H, Huan X, Chen J. J. Am. Chem. Soc. 2021; 143: 13382
    • 8b Wang P, Wen X, Cheng Y, Jiang M, Xiao W, Chen J. Angew. Chem. Int. Ed. 2021; 60: 22956
    • 8c Wang P, Xiao W, Chen J. Chin. J. Catal. 2022; 43: 548
    • 8d Bi M, Cheng Y, Xiao W, Chen J. Org. Lett. 2022; 24: 7589
    • 8e Xu S, Yan D, Rao L, Jiang M, Wu Y, Xiao W, Chen J. Org. Chem. Front. 2022; 9: 3747
    • 9a Li Y, Han Y, Xiong H, Zhu N, Qian B, Ye C, Bao H. Org. Lett. 2016; 18: 392
    • 9b Zhang H, Wu X, Wei Y, Zhu C. Org. Lett. 2019; 21: 7568
    • 9c Wang K, Chen S, Li Y, Li D, Bao H. Chin. J. Org. Chem. 2021; 41: 2707
    • 9d Xiong Y, Zhang G. J. Am. Chem. Soc. 2018; 140: 2735
    • 9e Amador A, Sherbrook E, Lu Z, Yoon T. Synthesis 2018; 50: 539
    • 9f Skubi K, Blum T, Yoon T. Chem. Rev. 2016; 116: 10035
    • 9g Twilton J, Le C, Zhang P, Shaw M, Evans R, MacMillan D. Nat. Rev. Chem. 2017; 1: 0052
    • 9h Witzel S, Hashmi A, Xie J. Chem. Rev. 2021; 121: 8868
    • 9i Wang P, Chen J, Xiao W. Org. Biomol. Chem. 2019; 17: 6936
    • 9j Li Y, Li W, Gu ZY, Chen J, Xia J. ACS Catal. 2020; 10: 1528
    • 9k Li F, Lin S, Chen Y, Shi C, Yan H, Li C, Wu C, Lin L, Duan C, Shi L. Angew. Chem. Int. Ed. 2021; 60: 1561
    • 9l Lu F, Lu L, He G, Bai J, Xiao W. J. Am. Chem. Soc. 2021; 143: 4168
    • 9m Ge L, Li Y, Jian W, Bao H. Chem. Eur. J. 2017; 23: 11767
    • 9n Cheung K, Kurandina D, Yata T, Gevorgyan V. J. Am. Chem. Soc. 2020; 142: 9932
    • 9o Gosset C, Moncomble A, Dumont C, Pellegrini S, Bousquet T, Sauthier M, Pelinski L. Adv. Synth. Catal. 2020; 362: 3100
    • 9p Thullen S, Rovis T. J. Am. Chem. Soc. 2017; 139: 15504
    • 9q Abbas S, Zhao P, Overman L. Org. Lett. 2018; 20: 868
    • 9r Murarka S. Adv. Synth. Catal. 2018; 360: 1735
    • 9s Protti S, Garbarino S, Ravelli D, Basso A. Angew. Chem. Int. Ed. 2016; 55: 15476
    • 9t Pantaine L, Bour C, Masson G. Photochemistry 2019; 46: 395
    • 9u Zhang Z, Gong L, Zhou X, Yan S, Li J, Yu DG. Acta Chim. Sin. 2019; 77: 783
    • 9v Liu Q, Zhang L, Mo F. Acta Chim. Sin. 2020; 78: 1297
    • 9w Ren X, Lu Z. Chin. J. Catal. 2019; 40: 1003
    • 10a Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 10b Jiang Y, Xu K, Zeng C. Chem. Rev. 2018; 118: 4485
    • 10c Chiarotto I, Mattiello L, Feroci M. Acc. Chem. Res. 2019; 52: 3297
    • 10d Meyer TH, Choi I, Tian C, Ackermann L. Chem 2020; 6: 2484
    • 10e Yu Y, Zhong J.-S, Xu K, Yuan Y, Ye K-Y. Adv. Synth. Catal. 2020; 11: 2102
    • 10f Huang B, Li Y, Yang C, Xia W. Chem. Commun. 2019; 55: 6731
    • 10g Huang B, Yang C, Zhou J, Xia W. Chem. Commun. 2020; 56: 5010
    • 10h Huang B, Guo L, Xia W. Green Chem. 2021; 23: 2095
    • 10i Zhang X, Yang C, Gao H, Wang L, Guo L, Xia W. Org. Lett. 2021; 23: 3472
    • 10j Zhang H, Liang M, Zhang X, He M, Yang C, Guo L, Xia W. Org. Chem. Front. 2022; 9: 95
    • 10k Huang B, Sun Z, Sun G. eScience 2022; 2: 243
  • 11 Li C, Yuan G, Ji X, Wang X, Ye J, Jiang H. Electrochim. Acta 2011; 56: 1529
  • 12 Bringmann J, Dinjus E. Appl. Organomet. Chem. 2001; 15: 135
  • 13 Sheta A, Mashaly M, Said S, Elmorsy S, Malkov A, Buckley B. Chem. Sci. 2020; 11: 9109
    • 14a Zhang W, Lin S. J. Am. Chem. Soc. 2020; 142: 20661
    • 14b Lu L, Siu J, Lai Y, Lin S. J. Am. Chem. Soc. 2020; 142: 21272
  • 15 Zhang W, Lu L, Zhang W, Wang Y, Ware S, Mondragon J, Rein J, Strotmen N, Lehnherr D, See K, Lin S. Nature 2022; 604: 292