Synthesis 2023; 55(21): 3434-3453
DOI: 10.1055/a-2110-4581
special topic
C–H Bond Functionalization of Heterocycles

C–H Bond Silylation of Heteroarenes

Hillol Khatua
,
Subrata Das
,
Sima Patra
,
This work was supported by the Science and Engineering Research Board, SERB-SUPRA (Scientific and Useful Profound Research Advancement) (SPR/2019/000158).


Abstract

Organosilicon compounds are highly important molecular scaffolds with versatile synthetic utility, and are used in a range of transformations. Such organosilicon compounds are employed in a wide range of research areas, including medicinal chemistry, drug discovery, pharmaceuticals, agrochemicals, fine chemicals, etc. Moreover, they are commonly encountered in a number of commercial products. However, the preparation of organosilicon compounds by means of traditional methods significantly limit their wider applications. Recently, several new concepts and powerful methods have been developed in order to prepare organosilicon compounds via transition-metal catalysis or without metal catalysis. While many procedures have been reported for the silylation of aromatic systems, methods for the silylation of heteroarenes are scarce. Nevertheless several excellent and robust strategies for heteroarene silylation have been discovered. In this short review, we summarize the different methods, mechanisms and catalyst development for the regioselective silylation of heteroarenes.

1 Introduction

2 Silylation of C–H Bonds through Organometallic Intermediates

2.1 Intermolecular C–H Bond Silylation Assisted by Directing Groups

2.2 Undirected Intermolecular C–H Bond Silylation

2.3 Intramolecular C–H Bond Silylation via a Tethered Silyl Unit

3 C–H Bond Silylation with Silicon Electrophiles

4 C–H Bond Silylation with Silicon Nucleophiles

5 C–H Bond Silylation with Silyl Radicals

6 Other Approaches

6.1 Alkali-Metal-Catalyzed C–H Bond Silylation

6.2 Magnesium-Promoted Reductive C–H Bond Silylation

7 Conclusions and Outlook



Publication History

Received: 25 February 2023

Accepted after revision: 14 June 2023

Accepted Manuscript online:
14 June 2023

Article published online:
24 July 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Kim J, Movassaghi M. Chem. Soc. Rev. 2009; 38: 3035
    • 1b Meng Z.-Y, Feng C.-T, Zhang L, Yang Q, Chen D.-X, Xu K. Org. Lett. 2021; 23: 4214
    • 1c Anderson LL. Asian J. Org. Chem. 2016; 5: 9
    • 1d Malapit CA, Howell AR. J. Org. Chem. 2015; 80: 8489
    • 1e Roy S, Das SK, Khatua H, Das S, Chattopadhyay B. Acc. Chem. Res. 2021; 54: 4395
    • 1f Das SK, Roy S, Chattopadhyay B. Angew. Chem. Int. Ed. 2023; 62: e202210912
    • 2a Hoque E, Hassan MM. M, Chattopadhyay B. J. Am. Chem. Soc. 2021; 143: 5022
    • 2b Fan Z, Chen X, Tanaka K, Park HS, Lam NY. S, Wong JJ, Houk KN, Yu J.-Q. Nature 2022; 610: 87
    • 2c Shao Q, Wu K, Zhuang Z, Qian S, Yu J.-Q. Acc. Chem. Res. 2020; 53: 833
    • 2d Su B, Hartwig JF. Angew. Chem. Int. Ed. 2022; 61: e202113343
    • 2e Simmons EM, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 17092
    • 2f Maji A, Guin S, Feng S, Dahiya A, Singh VK, Liu P, Maiti D. Angew. Chem. Int. Ed. 2017; 56: 14903
    • 2g Loup J, Dhawa U, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 12803
    • 2h Haldar C, Hoque EM, Chaturvedi J, Hassan MM. M, Chattopadhyay B. Chem. Commun. 2021; 57: 13059
    • 3a Ros A, Fernandez R, Lassaletta JM. Chem. Soc. Rev. 2014; 43: 3229
    • 3b Hartwig JF. Chem. Soc. Rev. 2011; 40: 1992
    • 3c Hassan MM. M, Guria S, Dey S, Das J, Chattopadhyay B. Sci. Adv. 2023; 9: eadg3311
    • 3d Bisht R, Haldar C, Hassan MM. M, Hoque EM, Chaturvedi J, Chattopadhyay B. Chem. Soc. Rev. 2022; 51: 5042
    • 3e Hoque EH, Hassan MM. M, Haldar C, Dey S, Guria S, Chaturvedi J, Chattopadhyay B. Synthesis 2022; 54: 3328
  • 4 Richter SC, Oestreich M. Trends Chem. 2020; 2: 13
    • 5a Langkopf E, Schinzer D. Chem. Rev. 1995; 95: 1375
    • 5b Nakao Y, Hiyama T. Chem. Soc. Rev. 2011; 40: 4893
    • 5c Sore HF, Galloway WR. J. D, Spring DR. Chem. Soc. Rev. 2012; 41: 1845
  • 6 Showell GA, Mills JS. Drug Discovery Today 2003; 8: 551
  • 7 Franz AK, Wilson SO. J. Med. Chem. 2013; 56: 388
  • 8 Zhang F, Wu D, Xu Y, Feng X. J. Mater. Chem. 2011; 21: 17590
  • 9 Tamao K, Uchida M, Izumizawa T, Furukawa K, Yamaguchi S. J. Am. Chem. Soc. 1996; 118: 11974
    • 10a Denmark SE, Neuville L. Org. Lett. 2000; 2: 3221
    • 10b Crich D, Grant D. J. Org. Chem. 2005; 70: 2384
    • 10c Nakano M, Shinamura S, Sugimoto R, Osaka I, Miyazaki E, Takimiya K. Org. Lett. 2012; 14: 5448
    • 11a Hartwig JF. Acc. Chem. Res. 2012; 45: 864
    • 11b Cheng C, Hartwig JF. Chem. Rev. 2015; 115: 8946
    • 11c Omann L, Königs CD. F, Klare HF. T, Oestreich M. Acc. Chem. Res. 2017; 50: 1258
    • 11d Schuman DP, Liu W.-B, Nesnas N, Stoltz BM. Organosilicon Chemistry: Novel Approaches and Reactions . Hiyama T, Oestreich M. Wiley-VCH; Weinheim: 2019: 213
    • 11e Tyagi A, Yadav N, Khan J, Singh S, Hazra CK. Asian J. Org. Chem. 2021; 10: 334
    • 11f Zhang X, Fang J, Cai C, Lu G. Chin. Chem. Lett. 2021; 32: 1280
    • 11g Fukumoto Y, Chatani N. Organosilicon Chemistry: Novel Approaches and Reactions . Hiyama T, Oestreich M. Wiley-VCH; Weinheim: 2019: 171
    • 12a Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 12b Zhang F, Spring DR. Chem. Soc. Rev. 2014; 43: 6906
    • 12c Gensch T, Hopkinson MN, Glorius F. Chem. Soc. Rev. 2016; 45: 2900
    • 12d Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
  • 13 Kakiuchi F, Matsumoto M, Sonoda M, Fukuyama T, Chatani N, Murai S, Furukawa N, Seki Y. Chem. Lett. 2000; 29: 750
  • 14 Kakiuchi F, Igi K, Matsumoto M, Chatani N, Murai S. Chem. Lett. 2001; 30: 422
  • 15 Devaraj K, Sollert C, Juds C, Gates PJ, Pilarski LT. Chem. Commun. 2016; 52: 5868
  • 16 Devaraj K, Ingner FJ. L, Sollert C, Gates PJ, Orthaber A, Pilarski LT. J. Org. Chem. 2019; 84: 5863
  • 17 Rubio-Pérez L, Iglesias M, Munárriz J, Polo V, Passarelli V, Pérez-Torrente JJ, Oro LA. Chem. Sci. 2017; 8: 4811
  • 18 Wang D, Chen X, Wong JJ, Jin L, Li M, Zhao Y, Houk KN, Shi Z. Nat. Commun. 2021; 12: 524
  • 19 Sun H, Cheng Y, Teng H, Chen X, Niu X, Yang H, Cui Y.-M, Xu L.-W, Yang L. J. Org. Chem. 2022; 87: 13346
  • 20 Ishiyama T, Sato K, Nishio Y, Saiki T, Miyaura N. Chem. Commun. 2005; 5065
  • 21 Lu B, Falck JR. Angew. Chem. Int. Ed. 2008; 47: 7508
  • 22 Cheng C, Hartwig JF. J. Am. Chem. Soc. 2015; 137: 592
  • 23 Karmel C, Rubel CZ, Kharitonova EV, Hartwig JF. Angew. Chem. Int. Ed. 2020; 59: 6074
  • 24 Karmel C, Hartwig JF. J. Am. Chem. Soc. 2020; 142: 10494
  • 25 Lee K, Katsoulis D, Choi J. ACS Catal. 2016; 6: 1493
  • 26 Fang H, Guo L, Zhang Y, Yao W, Huang Z. Org. Lett. 2016; 18: 5624
  • 27 Sunada Y, Soejima H, Nagashima H. Organometallics 2014; 33: 5936
  • 28 Xu W, Teng H, Luo Y, Lou S, Nishiura M, Hou Z. Chem. Asian J. 2020; 15: 753
  • 29 Chen S, Zhu J, Ke J, Li Y, He C. Angew. Chem. Int. Ed. 2022; 61: e202117820
  • 30 Mu D, Pan S, Wang X, Liao X, Huang Y, Chen J. Chem. Commun. 2022; 58: 7388
  • 31 An K, Ma W, Liu L.-C, He T, Guan G, Zhang Q.-W, He W. Nat. Commun. 2022; 13: 847
  • 32 Kuznetsov A, Onishi Y, Inamoto Y, Gevorgyan V. Org. Lett. 2013; 15: 2498
  • 33 Bähr S, Oestreich M. Angew. Chem. Int. Ed. 2017; 56: 52
  • 34 Brook MA. Silicon in Organic, Organometallic, and Polymer Chemistry . Wiley-Interscience; New York: 2000: 485-496
  • 36 Frick U, Simchen G. Synthesis 1984; 929
  • 37 Curless LD, Clark ER, Dunsford JJ, Ingleson MJ. Chem. Commun. 2014; 50: 5270
    • 38a Parks DJ, Blackwell JM, Piers WE. J. Org. Chem. 2000; 65: 3090
    • 38b Rendler S, Oestreich M. Angew. Chem. Int. Ed. 2008; 47: 5997
    • 38c Oestreich M, Hermeke J, Mohr J. Chem. Soc. Rev. 2015; 44: 2202
  • 39 Han Y, Zhang S, He J, Zhang Y. J. Am. Chem. Soc. 2017; 139: 7399
  • 40 Han Y, Zhang S, He J, Zhang Y. ACS Catal. 2018; 8: 8765
  • 41 Chen Q.-A, Klare HF. T, Oestreich M. J. Am. Chem. Soc. 2016; 138: 7868
  • 42 Klare HF. T, Oestreich M, Ito J.-i, Nishiyama H, Ohki Y, Tatsumi K. J. Am. Chem. Soc. 2011; 133: 3312
  • 43 Hesp AK. D, McDonald R, Ferguson MJ, Stradiotto M. J. Am. Chem. Soc. 2008; 130: 16394
  • 44 Wübbolt S, Oestreich M. Angew. Chem. Int. Ed. 2015; 54: 15876
  • 45 Postigo A, Rossi RA. Org. Lett. 2001; 3: 1197
  • 46 Postigo A, Vaillard SE, Rossi RA. J. Organomet. Chem. 2002; 656: 108
  • 47 Postigo A, Vaillard SE, Rossi RA. J. Phys. Org. Chem. 2002; 15: 889
  • 48 Gu Y, Shen Y, Zarate C, Martin R. J. Am. Chem. Soc. 2019; 141: 127
  • 49 Du W, Kaskar B, Blumbergs P, Subramanian P, Curran DP. Bioorg. Med. Chem. 2003; 11: 451
  • 50 Duncton MA. J. Med. Chem. Commun. 2011; 2: 1135
  • 51 Gua J, Cai C. Chem. Commun. 2016; 52: 10779
  • 52 Xu Z, Chai L, Liu Z.-Q. Org. Lett. 2017; 19: 5573
  • 53 Sakamoto R, Nguyen B.-N, Maruoka K. Asian J. Org. Chem. 2018; 7: 1085
  • 54 Liu S, Pan P, Fan H, Li H, Wang W, Zhang Y. Chem. Sci. 2019; 10: 3817
  • 55 Li Y, Shu K, Liu P, Sun P. Org. Lett. 2020; 22: 6304
  • 56 Rammal F, Gao D, Boujnah S, Hussein AA, Lalevée J, Gaumont A.-C, Morlet-Savary F, Lakhdar S. ACS Catal. 2020; 10: 13710
  • 57 Zhang G, Tian Y, Zhang C, Li X, Chen F. Chem. Commun. 2023; 59: 2449
  • 58 Wan Q, Hou Z.-W, Zhao X.-R, Xie X, Wang L. Org. Lett. 2023; 25: 1008
  • 59 Toutov AA, Liu W, Betz KN, Fedorov A, Stoltz BM, Grubbs RH. Nature 2015; 518: 80
  • 60 Liu W.-B, Schuman DP, Yang Y.-F, Toutov AA, Liang Y, Klare HF. T, Nesnas N, Oestreich M, Blackmond DG, Virgil S, Banerjee CS, Zare RN, Grubbs RH, Houk KN, Stoltz BM. J. Am. Chem. Soc. 2017; 139: 6867
  • 61 Banerjee S, Yang Y.-F, Jenkins ID, Liang Y, Toutov AA, Liu W.-B, Schuman DP, Grubbs RH, Stoltz BM, Krenske EH, Houk KN, Zare RN. J. Am. Chem. Soc. 2017; 139: 6880
  • 62 Neil B, Lucien F, Fensterbank L, Chauvier C. ACS Catal. 2021; 11: 13085
    • 63a Chauvier C, Finck L, Irran E, Oestreich M. Angew. Chem. Int. Ed. 2020; 59: 12337
    • 63b Finck L, Oestreich M. Chem. Eur. J. 2021; 27: 11061
  • 64 Jeong E, Heo J, Jin S, Kim D, Chang S. ACS Catal. 2022; 12: 4898
  • 65 Zheng S, Zhang T, Maekawa H. J. Org. Chem. 2020; 85: 13965