Synthesis 2024; 56(09): 1335-1354
DOI: 10.1055/a-2169-4078
review

Heteroatom-Embedding Annulative π-Extension (Hetero-APEX) Reactions: An Overview

Hideto Ito
a   Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
,
Kou P. Kawahara
a   Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
,
a   Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
b   Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
› Author Affiliations
We thank the funding supports by JSPS KAKENHI (Grant Nos. 19H05463 to K.I.), the Noguchi Research Foundation (to H.I.), Foundation of Public Interest of Tatematsu (to H.I.) and the JSPS Research Fellowship for Young Scientists (to K.P.K) for the research on hetero-APEX chemistry.


Abstract

Heteroatom-embedded polycyclic aromatic compounds (hetero-PACs) are a class of organic compounds contributing to a variety of research fields such as materials science, chemical biology, and so on. For applications using hetero-PACs, efficient preparation of hetero-PACs is essential. In particular, reactions transforming unfunctionalized aromatic compounds into hetero-PACs using appropriate heteroatom-containing aromatic compounds (π-extending agents) represent the most ideal way to prepare hetero-PACs. In this review, such heteroatom-embedding annulative π-extension (hetero-APEX) reactions, including their reaction mechanisms and scope of substrates, are described.

1 Introduction

2 Oxa-APEX Reactions

3 Aza-APEX Reactions

4 Thia-APEX Reactions

5 Conclusion and Outlook



Publication History

Received: 17 August 2023

Accepted after revision: 06 September 2023

Accepted Manuscript online:
06 September 2023

Article published online:
18 October 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Stępień M, Gońka E, Żyła M, Sprutta N. Chem. Rev. 2017; 117: 3479
    • 1b Borissov A, Maurya YK, Moshniaha L, Wong W.-S, Żyła-Karwowska M, Stępień M. Chem. Rev. 2022; 122: 565
    • 1c Li H, Shi W, Song J, Jang H.-J, Dailey J, Yu J, Katz HE. Chem. Rev. 2019; 119: 3
    • 1d Karak P, Rana SS, Choudhury J. Chem. Commun. 2022; 58: 133
    • 1e Wang C, Dong H, Hu W, Liu Y, Zhu D. Chem. Rev. 2012; 112: 2208
    • 1f Janosik T, Rannug A, Rannug U, Wahlström N, Slatt J, Bergman J. Chem. Rev. 2018; 118: 9058
    • 1g Hirai M, Tanaka N, Sakai M, Yamaguchi S. Chem. Rev. 2019; 119: 8291
    • 1h Dhbaibi K, Favereau L, Crassous J. Chem. Rev. 2019; 119: 884
    • 1i Wöhrle T, Wurzbach I, Kirres J, Kostidou A, Kapernaum N, Litterscheidt J, Haenle JC, Staffeld P, Baro A, Giesselmann F, Laschat S. Chem. Rev. 2016; 116: 1139
    • 1j Cai Z, Awais MA, Zhang N, Yu L. Chem 2018; 4: 2538
    • 1k Anthony JE. Chem. Rev. 2006; 106: 5028
    • 2a Terrones H, Lv R, Terrones M, Dresselhaus MS. Rep. Prog. Phys. 2012; 75: 062501
    • 2b Szűcs R, Bouit P.-A, Nyulászi L, Hissler M. ChemPhysChem 2017; 18: 2618
    • 2c Jeong E.-J, Kim Y.-K, Park J.-H, Lee E.-Y, Hwang S.-H. US 20150349275A1, 2015
    • 2d Nakayama K, Hashimoto Y, Sasabe H, Pu Y.-J, Yokoyama M, Kido J. Jpn. J. Appl. Phys. 2010; 49: 01AB11
    • 2e Yamaguchi AD, Chepiga KM, Yamaguchi J, Itami K, Davies HM. L. J. Am. Chem. Soc. 2015; 137: 644
    • 2f Ma Y, Sun Y, Liu Y, Gao J, Chen S, Sun X, Qiu W, Yu G, Cui G, Hu W, Zhu D. J. Mater. Chem. 2005; 15: 4894
    • 2g Bazzini C, Brovelli S, Caronna T, Gambarotti C, Giannone M, Macchi P, Meinardi F, Mele A, Panzeri W, Recupero F, Sironi A, Tubino R. Eur. J. Org. Chem. 2005; 1247
    • 2h Xiao L, Lan H, Kido J. Chem. Lett. 2007; 36: 802
    • 2i Cheng C.-H, Wu J.-L, Liao C.-Y. US 8753756B2, 2014
    • 2j Mamada M, Minamiki T, Katagiri H, Tokito S. Org. Lett. 2012; 14: 4062
    • 2k Tanaka K, Iwama Y, Kishimoto M, Ohtsuka N, Hoshino Y, Honda K. Org. Lett. 2020; 22: 5207
    • 2l Li M, Xie W, Cai X, Peng X, Liu K, Gu Q, Zhou J, Qiu W, Chen Z, Gan Y, Su S.-J. Angew. Chem. Int. Ed. 2022; 61: e202209343
    • 2m Tsuji H, Nakamura E. Acc. Chem. Res. 2017; 50: 396
    • 2n Chen X, Yan L, Liu Y, Yang Y, You J. Chem. Commun. 2020; 56: 15080
    • 3a Marco-Contelles J, Pérez-Mayoral E, Samadi A, Carreiras M. dC, Soriano E. Chem. Rev. 2009; 109: 2652
    • 3b Sun Y.-X, Wang X.-G, Shen G.-D, Yang T, Yang Y.-H, Li J, Yang M.-Y, Sun H.-M, Wei J.-F. Adv. Synth. Catal. 2020; 362: 1651
    • 3c Goujon A, Rocard L, Cauchy T, Hudhomme P. J. Org. Chem. 2020; 85: 7218
    • 3d Strekowski L, Czarny A, Lee H. J. Fluorine Chem. 2000; 104: 281
    • 3e Tsvelikhovsky D, Buchwald SL. J. Am. Chem. Soc. 2010; 132: 14048
    • 3f Ye X, Xu B, Sun J, Dai L, Shao Y, Zhang Y, Chen J. J. Org. Chem. 2020; 85: 13004
    • 3g Wang T.-J, Chen W.-W, Lia Y, Xu M.-H. Org. Biomol. Chem. 2015; 13: 6580
    • 3h Pang X, Lou Z, Li M, Wen L, Chen C. Eur. J. Org. Chem. 2015; 3361
    • 3i Guo H.-M, Mao R.-Z, Wang Q.-T, Niu H.-Y, Xie M.-S, Qu G.-R. Org. Lett. 2013; 15: 5460

      Examples of construction of pyrylium/thiopyrylium structures:
    • 4a Kharchenko VG, Kleimenova VI, Yakoreva AR. Chem. Heterocycl. Compd. 1970; 6: 834
    • 4b Berényi S, Tóth M, Gyulai S, Szilágyi L. Heterocycles 2002; 57: 135
    • 4c Wu D, Pisula W, Haberecht MC, Feng X, Müllen K. Org. Lett. 2009; 11: 5686
    • 4d Nagahora N, Kushida T, Shioji K, Okuma K. Organometallics 2019; 38: 1800
    • 4e Tanaka K, Kishimoto M, Sukekawa M, Hoshino Y, Honda K. Tetrahedron Lett. 2018; 59: 3361
    • 4f Shen G.-B, Xia K, Li X.-T, Li J.-L, Fu Y.-H, Yuan L, Zhu X.-Q. J. Phys. Chem. A 2016; 120: 1779
    • 4g Shenbor MI, Azarov AS. Khim. Getero. Soedin. 1979; 29
    • 4h Rao KP, Kusamoto T, Toshimitsu F, Inayoshi K, Kume S, Sakamoto R, Nishihara H. J. Am. Chem. Soc. 2010; 132: 12472
    • 4i Wehrmann CM, Charlton RT, Chen MS. J. Am. Chem. Soc. 2019; 141: 3240
    • 4j Spiliopoulos IK, Mikroyannidis JA. Macromolecules 2002; 35: 7254
  • 5 Lv B, Xiao J, Zhou J, Zhang X, Duan J, Su W, Zhao J. ACS Appl. Mater. Interfaces 2016; 8: 18998
  • 6 Saint-Ruf G, Buu-Hoï NP, Jacquignon P. J. Chem. Soc. 1958; 1773
  • 7 Zhang S, Qiao X, Chen Y, Wang Y, Edkins RM, Liu Z, Li H, Fang Q. Org. Lett. 2014; 16: 342
    • 8a Mackey K, Jones DJ, Pardo LM, McGlacken GP. Eur. J. Org. Chem. 2021; 495
    • 8b Đorđević L, Milano D, Demitri N, Bonifazi D. Org. Lett. 2020; 22: 4283

      Other examples of constructing heteroaromatic rings:
    • 9a Waley MW, Gorindachari TR. Org. React. 1951; 6: 74
    • 9b Imran M, Wehrmann CM, Chen MS. J. Am. Chem. Soc. 2020; 142: 38
    • 9c Greßies S, Ito M, Sakai M, Osaki H, Kim JH, Gensch T, Daniliuc C, Ando N, Yamaguchi S, Glorius F. Chem. Eur. J. 2021; 27: 2753
    • 9d Larock RC, Yum EK, Refvik MD. J. Org. Chem. 1998; 63: 7652
    • 9e Masuya Y, Tobisu M, Chatani N. Org. Lett. 2016; 18: 4312
    • 9f Zeng W, Wu W, Jiang H, Huang L, Sun Y, Chen Z, Li X. Chem. Commun. 2013; 49: 6611
    • 9g Wang S, Lv B, Cui Q, Ma X, Ba X, Xiao J. Chem. Eur. J. 2015; 21: 14791
    • 9h Yue D, Larock RC. J. Org. Chem. 2002; 67: 1905
    • 9i Meng L, Fujikawa T, Kuwayama M, Segawa Y, Itami K. J. Am. Chem. Soc. 2016; 138: 10351
    • 9j Song T, Han Y, Jin P, Li X, Song Y, Xiao J. J. Mater. Chem. C 2019; 7: 6344
    • 9k Miletić T, Fermi A, Orfanos I, Avramopoulos A, De Leo F, Demitri N, Bergamini G, Ceroni P, Papadopoulos MG, Couris S, Bonifazi D. Chem. Eur. J. 2017; 23: 2363
    • 9l Saha M, Bao Y.-H, Zhou CA. Chem. Lett. 2018; 47: 1383
    • 9m Ma Y, Shi Z, Zhang A, Li J, Wei X, Jiang T, Li Y, Wang X. Dyes Pigm. 2016; 135: 41
    • 10a Ito H, Ozaki K, Itami K. Angew. Chem. Int. Ed. 2017; 56: 11144
    • 10b Ito H, Segawa Y, Murakami K, Itami K. J. Am. Chem. Soc. 2019; 141: 3

      Representative examples of APEX reaction of PAH and heteroaromatics:
    • 11a Ozaki K, Zhang H, Ito H, Lei A, Itami K. Chem. Sci. 2013; 4: 3416
    • 11b Ozaki K, Kawasumi K, Shibata M, Ito H, Itami K. Nat. Commun. 2015; 6: 6251
    • 11c Ozaki K, Matsuoka W, Ito H, Itami K. Org. Lett. 2017; 19: 1930
    • 11d Matsuoka W, Ito H, Itami K. Angew. Chem. Int. Ed. 2017; 56: 12224
    • 11e Kitano H, Matsuoka W, Ito H, Itami K. Chem. Sci. 2018; 9: 7556
    • 11f Nakamuro T, Kumazawa K, Ito H, Itami K. Synlett 2019; 30: 423
    • 11g Matsuoka W, Ito H, Sarlah D, Itami K. Nat. Commun. 2021; 12: 3940
    • 11h Matsuoka W, Kawahara KP, Ito H, Sarlah D, Itami K. J. Am. Chem. Soc. 2023; 145: 658
    • 11i Kawahara KP, Matsuoka W, Ito H, Itami K. Angew. Chem. Int. Ed. 2020; 59: 6383
  • 12 Shibata M, Ito H, Itami K. J. Am. Chem. Soc. 2018; 140: 2196

    • Examples of APEX reactions reported by other groups:
    • 13a Schuler B, Collazos S, Gross L, Meyer G, Pérez D, Guitián E, Peña D. Angew. Chem. Int. Ed. 2014; 53: 9004
    • 13b Sakakibara T, Tanaka Y, Yamaki S. Chem. Lett. 1986; 15: 797
    • 13c Pham VM, Cramer N. Angew. Chem. Int. Ed. 2014; 53: 3484
    • 13d Abid M, Spaeth A, Török B. Adv. Synth. Catal. 2006; 348: 2191
    • 13e Dann O, Kokorudz M, Gropper R. Chem. Ber. 1954; 87: 140
    • 13f Tang R.-Y, Li J.-H. Chem. Eur. J. 2010; 16: 4733
    • 13g Clement JA, Sivasakthikumaran R, Mohanakrishnan AK, Sundaramoorthy S, Velmurugan D. Eur. J. Org. Chem. 2011; 569
    • 13h Deb ML, Baruah B, Bhuyan PJ. Synthesis 2008; 286
    • 13i Alonso M. Á, López-Alvarado P, Avendaño C, Menéndez JC. Tetrahedron 2003; 59: 2821
    • 13j Laha JK, Dayal N. Org. Lett. 2015; 17: 4742
    • 13k Matsuda Y, Naoe S, Oishi S, Fujii N, Ohno H. Chem. Eur. J. 2015; 21: 1463
    • 13l Yamashita M, Horiguchi H, Hirano K, Satoh T, Miura M. J. Org. Chem. 2009; 74: 7481
    • 13m Song G, Gong X, Li X. J. Org. Chem. 2011; 76: 7583
    • 13n Lee JB, Kim GH, Jeon JH, Jeong SY, Lee S, Park J, Lee D, Kwon Y, Seo JK, Chun J.-H, Kang SJ, Choe W, Rohde J.-U, Hong SY. Nat. Commun. 2022; 13: 2421
    • 13o Fort EH, Scott LT. Angew. Chem. Int. Ed. 2010; 49: 6626
    • 13p Clar E, Zander M. J. Chem. Soc. 1957; 4616
    • 13q Li J, Jiao C, Huang K.-W, Wu J. Chem. Eur. J. 2011; 17: 14672
    • 13r Konishi A, Hirao Y, Matsumoto K, Kurata H, Kubo T. Chem. Lett. 2013; 42: 592
    • 14a Ito S, Itoh T, Nakamura M. Angew. Chem. Int. Ed. 2011; 50: 454
    • 14b Matsumoto A, Ilies L, Nakamura E. J. Am. Chem. Soc. 2011; 133: 6557
  • 15 Musgrave OC, Webster CJ. J. Chem. Soc., Perkin Trans. 1 1974; 2260
  • 16 Morrison BJ, Musgrave OC. J. Chem. Res. 2005; 2005: 549
  • 17 Qarah A, Gasonoo M, Do D, Klumpp DA. Tetrahedron Lett. 2016; 57: 3711
  • 18 Bashir MA, Zhang Y, Yu H, Wang B, Zhao W, Zhong F. Green Chem. 2021; 23: 5031
    • 19a Tan G, You Q, Lan J, You J. Angew. Chem. Int. Ed. 2018; 57: 6309
    • 19b Wang Z, Yang M, Yang Y. Org. Lett. 2018; 20: 3001
    • 20a Zhang F.-G, Chen Z, Tang X, Ma J.-A. Chem. Rev. 2021; 121: 14555
    • 20b Takahashi M, Ishida H, Kohmoto M. Bull. Chem. Soc. Jpn. 1976; 49: 1725
    • 20c Benson SC, Palabrica CA, Snyder JK. J. Org. Chem. 1987; 52: 4610
    • 21a Benson SC, Gross JL, Snyder JK. J. Org. Chem. 1990; 55: 3257
    • 21b Wan Z, Snyder JK. Tetrahedron Lett. 1997; 38: 7495
    • 21c Lahue BR, Wan Z.-K, Snyder JK. J. Org. Chem. 2003; 68: 4345
    • 21d Benson SC, Li J.-H, Snyder JK. J. Org. Chem. 1992; 57: 5285
  • 22 Hiruta K, Kitahara K, Nishi H, Tokita S. Synthesis 1982; 229
  • 23 Aksenov AV, Aksenov NA, Lyakhovnenko AS, Aksenova IV. Synthesis 2009; 3439
    • 24a Tokimaru Y, Ito S, Nozaki K. Angew. Chem. Int. Ed. 2018; 57: 9818
    • 24b Tokimaru Y, Ito S, Nozaki K. Angew. Chem. Int. Ed. 2017; 56: 15560
    • 24c Zhang X, Mackinnon MR, Bodwell GJ, Ito S. Angew. Chem. Int. Ed. 2022; 61: e202116585

      For reviews, see:
    • 25a Bodwell GJ, Venkataramana G, Sagar UK. In Fragments of Fullerenes and Carbon Nanotubes: Designed Synthesis, Unusual Reactions, and Coordination Chemistry. Petrukhina MA, Scott LT. Wiley; Hoboken: 2011: 367
    • 25b Bodwell GJ. Chem. Rec. 2014; 14: 547
  • 26 Maiti S, Achar TK, Mal P. Org. Lett. 2017; 19: 2006
    • 27a Gassner C, Hesse R, Schmidt AW, Knolker H.-J. Org. Biomol. Chem. 2014; 12: 6490
    • 27b Cho SH, Yoon J, Chang S. J. Am. Chem. Soc. 2011; 133: 5996
    • 27c Krahl MP, Jager A, Krause T, Knolker H.-J. Org. Biomol. Chem. 2006; 4: 3215
  • 28 Regar R, Mishra R, Mondal PK, Sankar J. J. Org. Chem. 2018; 83: 9547
  • 29 Wang M, Kong L, Wang F, Li X. Adv. Synth. Catal. 2017; 359: 4411
  • 30 Schendera E, Unkel L.-N, Quyen PP. H, Salkewitz G, Hoffmann F, Villinger A, Brasholz M. Chem. Eur. J. 2020; 26: 269
  • 31 Kouznetsov VV. Tetrahedron 2009; 65: 2721
  • 32 Yu Z, Zhang Y, Tang J, Zhang L, Liu Q, Li Q, Gao G, You J. ACS Catal. 2020; 10: 203
  • 33 Chen C, Wang Y, Shi X, Sun W, Zhao J, Zhu Y.-P, Liu L, Zhu B. Org. Lett. 2020; 22: 4097
  • 34 Klemm LH, Lawrence RF. J. Heterocycl. Chem. 1979; 16: 599
    • 35a Neugebauer W, Kos AJ, Schleyer P. vR. J. Organomet. Chem. 1982; 228: 107
    • 35b Ashe AJ, Kampf JW, Savla PM. J. Org. Chem. 1990; 55: 5558
    • 35c Ashe AJ, Kampf JW, Savla PM. Heteroat. Chem. 1994; 5: 113
    • 35d Chintala SM, Petroff JT, Barnes A, McCulla RD. J. Sulfur Chem. 2019; 40: 503
    • 35e Philipp S, Dominik J, Arne B. WO 2012048781A1, 2012
    • 35f Furukawa S, Suda Y, Kobayashi J, Kawashima T, Tada T, Fujii S, Kiguchi M, Saito M. J. Am. Chem. Soc. 2017; 139: 5787
  • 36 Yan J, Pulis AP, Perry GJ. P, Procter DJ. Angew. Chem. Int. Ed. 2019; 58: 15675
  • 37 Kawahara KP, Ito H, Itami K. Chem. Commun. 2023; 59: 1157
    • 38a Ramesh E, Shankar M, Dana S, Sahoo AK. Org. Chem. Front. 2016; 3: 1126
    • 38b Wang X, Gensch T, Glorius F. Org. Chem. Front. 2016; 3: 1619
    • 38c Ramesh E, Guntreddi T, Sahoo AK. Eur. J. Org. Chem. 2017; 4405
    • 38d Saravanan P, Anbarasan P. Org. Lett. 2014; 16: 848
    • 38e Hostier T, Ferey V, Ricci G, Pardo DG, Cossy J. Org. Lett. 2015; 17: 3898
  • 39 Sato R, Onodera A, Goto T, Saito M. Heterocycles 1988; 27: 2563
  • 40 Kawahara KP, Ito H, Itami K. Org. Chem. Front. 2023; 10: 1880
  • 41 Yang S, Cheng R, Zhang M, Bin Z, You J. ACS Catal. 2019; 9: 6188