Synthesis
DOI: 10.1055/a-2270-0665
paper
Special Issue PSRC-10 (10th Pacific Symposium on Radical Chemistry)

Synthesis of Phosphinoboranes via Coordination-Induced Bromine Abstraction of an Isolable Phosphinyl Radical with Bromoboranes

Shintaro Ishida
,
Yasuhiro Katayama
,
Fumiya Hirakawa
,
Takeaki Iwamoto
This work was supported by the JSPS KAKENHI grants JP19H02730 and JP22K18331 (S.I.).


Abstract

A stable dialkylphosphinyl radical reacted with bromoboranes to afford the corresponding phosphinoboranes accompanied with a bromophosphine under neutral condition at room temperature. The obtained phosphinoboranes have almost planar structures and have an effective P–B dative π-bond. The formation of phosphinoboranes would proceed via coordination-induced bromine abstraction from bromoboranes as a pivotal step, which was supported by the computational study.

Supporting Information



Publication History

Received: 25 January 2024

Accepted after revision: 15 February 2024

Accepted Manuscript online:
15 February 2024

Article published online:
01 March 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For reviews on phosphinoboranes and their oligomers, see:
    • 1a Paine RT, Nöth H. Chem. Rev. 1995; 95: 343
    • 1b Power PP. Chem. Rev. 1999; 99: 3463
    • 1c Fischer RC, Power PP. Chem. Rev. 2010; 110: 3877
    • 1d Bailey JA, Pringle PG. Coord. Chem. Rev. 2015; 297–298: 77
  • 2 Han D, Anke F, Trose M, Beweries T. Coord. Chem. Rev. 2019; 380: 260
  • 3 Marquardt C, Karl TJ, Schwan C, Stauber A, Virovets AV, Whittell GR, Manners I, Scheer M. Angew. Chem. Int. Ed. 2015; 54: 13782
  • 4 Moussa MA, Marquardt C, Hegen O, Seidl M, Scheer M. New J. Chem. 2021; 45: 14916
  • 5 Morris LJ, Rajabi NA, Hill MS, Manners I, McMullin CL, Mahon MF. Dalton Trans. 2020; 49: 14584
  • 6 Thoms C, Marquardt C, Timoshkin AY, Bodensteiner M, Scheer M. Angew. Chem. Int. Ed. 2013; 52: 5150
    • 7a Feng X, Olmstead MM, Power PP. Inorg. Chem. 1986; 25: 4615
    • 7b Pestana DC, Power PP. J. Am. Chem. Soc. 1991; 113: 8426
    • 8a Geier SJ, Gilbert TM, Stephan DW. J. Am. Chem. Soc. 2008; 130: 12632
    • 8b Geier SJ, Gilbert TM, Stephan DW. Inorg. Chem. 2011; 50: 336
  • 9 Amgoune A, Ladeira S, Miqueu K, Bourissou D. J. Am. Chem. Soc. 2012; 134: 6560
    • 10a Ordyszewska A, Szynkiewicz N, Perzanowski E, Chojnacki J, Wiśniewska A, Grubba R. Dalton Trans. 2019; 48: 12482
    • 10b Szynkiewicz N, Ordyszewska A, Chojnacki J, Grubba R. Inorg. Chem. 2021; 60: 3794
    • 10c Ordyszewska A, Szynkiewicz N, Chojnacki J, Grubba R. Inorg. Chem. 2022; 61: 4361
    • 11a Bailey JA, Haddow MF, Pringle PG. Chem. Commun. 2014; 50: 1432
    • 11b Bailey JA, Ploeger M, Pringle PG. Inorg. Chem. 2014; 53: 7763
    • 11c Bailey JA, Sparkes HA, Pringle PG. Chem. Eur. J. 2015; 21: 5360
    • 12a Daley EN, Vogels CM, Geier SJ, Decken A, Doherty S, Westcott SA. Angew. Chem. Int. Ed. 2015; 54: 2121
    • 12b Geier SJ, Vogels CM, Mellonie NR, Daley EN, Decken A, Doherty S, Westcott SA. Chem. Eur. J. 2017; 23: 14485
    • 12c Murphy MC, Trofimova A, LaFortune JH. W, Vogels CM, Geier SJ, Binder JF, Macdonald CL. B, Stephan DW, Westcott SA. Dalton Trans. 2020; 49: 5092
    • 12d Akram MO, Vogels CM, Santos WL, Westcott SA, Martin CD. Synlett 2023; 34: 2193
  • 13 Rivard E, Merrill WA, Fettinger JC, Wolf R, Spikes GH, Power PP. Inorg. Chem. 2007; 46: 2971
  • 14 Kubo K, Kawanaka T, Tomioka M, Mizuta T. Organometallics 2012; 31: 2026
  • 15 Kano N, O’Brien NJ, Uematsu R, Ramozzi R, Morokuma K. Angew. Chem. Int. Ed. 2017; 56: 5882
  • 16 Stennett TE, Jayaraman A, Bruckner T, Schneider L, Braunschweig H. Chem. Sci. 2020; 11: 1335
  • 17 Drover MW, Peters JC. Dalton Trans. 2018; 47: 3733
    • 18a Kaaz M, Bender J, Förster D, Frey W, Nieger M, Gudat D. Dalton Trans. 2014; 43: 680
    • 18b Kaaz M, Locke RJ. C, Merz L, Benedikter M, König S, Bender J, Schlindwein SH, Nieger M, Gudat G. Eur. J. Inorg. Chem. 2019; 1586
    • 19a Tsurusaki A, Sasamori T, Wakamiya A, Yamaguchi S, Nagura K, Irle S, Tokitoh N. Angew. Chem. Int. Ed. 2011; 50: 10940
    • 19b Tsurusaki A, Sasamori T, Tokitoh N. Chem. Eur. J. 2014; 20: 3752
  • 20 Spokoyny AM, Lewis CD, Teverovskiy G, Buchwald SL. Organometallics 2012; 31: 8478

    • For phosphinyl radical 1 and its heavier analogues:
    • 21a Ishida S, Hirakawa F, Iwamoto T. J. Am. Chem. Soc. 2011; 133: 12968
    • 21b Ishida S, Hirakawa F, Furukawa K, Yoza K, Iwamoto T. Angew. Chem. Int. Ed. 2014; 53: 11172
    • 21c Ishida S, Hirakawa F, Iwamoto T. Bull. Chem. Soc. Jpn. 2018; 91: 1168
  • 22 For a recent review of phosphine-centered radicals in organic synthesis, see: Leca D, Fensterbank L, Lacôte E, Malacria M. Chem. Soc. Rev. 2005; 34: 858

    • For selected reports on the SH2 reactions and radical coupling of phosphinyl radicals, see;
    • 23a Low H, Tavs P. Tetrahedron Lett. 1966; 1357
    • 23b Fritzsche H, Hasserodt U, Korte F. Angew. Chem. Int. Ed. 1964; 3: 64
  • 24 Hirakawa F, Nakagawa H, Honda S, Ishida S, Iwamoto T. J. Org. Chem. 2020; 85: 14634

    • The twist angle τPB is defined as the dihedral angle between POAV(P) (π-orbital axis vector on the phosphorus atom) and the POAV(B) (π-orbital axis vector on the boron atom) through the P–B bond. For POAV, see:
    • 25a Haddon RC, Scott LT. Pure Appl. Chem. 1986; 58: 137
    • 25b Haddon RC. Acc. Chem. Res. 1988; 21: 243
  • 26 Konaka S, Ito T, Morino Y. Bull. Chem. Soc. Jpn. 1966; 39: 1146
    • 27a Bridgeman AJ, Cavigliasso G, Ireland LR, Rothery J. J. Chem. Soc., Dalton Trans. 2001; 2095
    • 27b Mayer I. J. Comput. Chem. 2007; 28: 204
  • 28 Ishida S, Ichikawa H, Iwamoto T. Chem. Lett. 2017; 46: 883
  • 29 Blanksby SJ, Ellison GB. Acc. Chem. Res. 2003; 36: 255
  • 30 Ozaki T, Kaga A, Saito H, Yorimitsu H.  Synthesis 2021; 53: 3019
  • 31 CCDC 2307542 (6b), 2307543 (3a), 2307544 (3b), and 2307545 (4) contain the supplementary crystallographic data for compounds respectively. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
    • 32a Sheldrick GM. SHELXL-2018, Program for the Refinement of Crystal Structures. University of Göttingen; Germany: 2018
    • 32b Sheldrick GM. SADABS, Empirical Absorption Correction Program . University of Göttingen; Germany: 1996
  • 33 Kabuto C, Akine S, Nemoto T, Kwon E. J. Crysttallogr. Soc. Jpn. 2009; 51: 218
  • 34 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision D.01 . Gaussian, Inc; Wallingford CT: 2009
    • 35a Ohno K, Maeda S. Chem. Phys. Lett. 2004; 384: 277
    • 35b Maeda S, Ohno K. J. Phys. Chem. A 2005; 109: 5742
    • 35c Ohno K, Maeda S. J. Phys. Chem. A 2006; 110: 8933
    • 35d Maeda S, Ohno K. J. Phys. Chem. A 2007; 111: 4527
  • 36 Lu T, Chen F. J. Comput. Chem. 2012; 33: 580