Synthesis
DOI: 10.1055/a-2317-7262
review
Special Topic Dedicated to Prof. H.Ila

Comprehensive Strategies for the Synthesis of 1,3-Enyne Derivatives

Kamal Kant
a   Department of Chemistry, National Institute of Technology Manipur, Imphal – 795004, India
,
Chandresh Kumar Patel
a   Department of Chemistry, National Institute of Technology Manipur, Imphal – 795004, India
,
Reetu Reetu
a   Department of Chemistry, National Institute of Technology Manipur, Imphal – 795004, India
,
Yaqoob Ahmed Teli
a   Department of Chemistry, National Institute of Technology Manipur, Imphal – 795004, India
,
Priyadarshini Naik
a   Department of Chemistry, National Institute of Technology Manipur, Imphal – 795004, India
,
Sanjukta Some
a   Department of Chemistry, National Institute of Technology Manipur, Imphal – 795004, India
,
Chinmoy Kumar Hazra
b   Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi – 110016, India
,
Nayyef Aljaar
c   Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa – 13133, Jordan
,
Ananta K. Atta
d   Department of Chemistry, National Institute of Technology Jamshedpur, Adtyapur, Jharkhand 831014, India
,
a   Department of Chemistry, National Institute of Technology Manipur, Imphal – 795004, India
› Author Affiliations
C.C.M. appreciates the Science and Engineering Research Board (Grant Nos. CRG/2020/004509 and ECR/2016/000337), Ministry of Education, India, STARS, IISc Bangalore (STARS/STARS-2/2023-0928), and National Institute of Technology Manipur for financial support. K.K. and C.K.P are grateful to the Ministry of Education, India for fellowship support.


Abstract

The synthesis of 1,3-enyne has widespread appeal in organic synthesis due to their proven adaptability as intermediates in routes to compounds of significant biological and material interest. A variety of methods have been designed to formulate 1,3-enynes from diverse substrates, such as alkynes, 1,3-diynes, alkynyl-substituted cyclopropanes, and propargyl alcohols. This review covers the synthesis of 1,3-enynes utilizing the homo- and cross-coupling of alkynes, nucleophilic metal/acid-induced cyclopropane ring opening, and rearrangement/dehydration of propargyl alcohols. A key concern in procedures starting from alkynes and 1,3-diynes is the management of regio-, stereo-, and, where fitting, chemoselectivity. In contrast, in cyclopropyl ring opening nucleophile orientation determines the 1,3-enynes formed. Efficient methods for the broad and selective synthesis of 1,3-enynes are highlighted and specific examples are given to demonstrate the efficacy of these processes.

1 Introduction and Scope

2 Synthesis

2.1 Synthesis of 1,3-Enynes from Alkynes

2.1.1 Metal-Catalyzed Cross-Coupling/Additions of Alkynes with Alkenes or Vinyl or Aryl Halides

2.1.1.1 Palladium Catalysis

2.1.1.2 Rhodium Catalysis

2.1.1.3 Copper Catalysis

2.1.1.4 I ron Catalysis

2.1.1.5 Nickel Catalysis

2.1.1.6 Miscellaneous

2.2 Synthesis of Enynes from Propargyl Alcohols

2.3 Metal/Acid-Catalyzed Ring Opening of Cyclopropanes

3 Conclusion



Publication History

Received: 28 March 2024

Accepted after revision: 01 May 2024

Accepted Manuscript online:
01 May 2024

Article published online:
10 June 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Kim H, Lee H, Lee D, Kim S, Kim D. J. Am. Chem. Soc. 2007; 129: 2269
    • 1b Rudi A, Schleyer M, Kashman Y. J. Nat. Prod. 2000; 63: 1434
    • 1c Nicolaou KC, Dai W.-M, Tsay S.-C, Estevez VA, Wrasidlo W. Science 1992; 256: 1172
    • 1d Nicolaou KC, Dai WM. Angew. Chem., Int. Ed. Engl. 1991; 30: 1387
    • 1e Goldberg IH. Acc. Chem. Res. 1991; 24: 191
    • 1f Schaus SE, Cavalieri D, Myers AG. Proc. Natl. Acad. Sci. U.S.A. 2001; 98: 11075
  • 3 Campbell K, Kuehl CJ, Ferguson MJ, Stang PJ, Tykwinski RR. J. Am. Chem. Soc. 2002; 124: 7266
  • 4 Negishi E.-I, Anastasia L. Chem. Rev. 2003; 103: 1979
    • 5a Gujjarappa R, Vodnala N, Reddy VG, Malakar CC. Eur. J. Org. Chem. 2020; 2020: 803
    • 5b Avadhani A, Iniyavan P, Acharya A, Gautam V, Chakrabarti S, Ila H. ACS Omega 2019; 4: 17910
    • 5c Malakar CC, Sudheendran K, Imrich H, Mika S, Beifuss U. Org. Biomol. Chem. 2012; 10: 3899
    • 5d Acharya A, Gautam V, Ila H. J. Org. Chem. 2017; 82: 7920
    • 5e Putta VP. R. K, Gujjarappa R, Tyagi U, Pujar PP, Malakar CC. Org. Biomol. Chem. 2019; 17: 2516
    • 5f Yugandar S, Konda S, Ila H. Org. Lett. 2017; 19: 1512
    • 5g Kant K, Banerjee S, Patel CK, Kalita S, Reetu R, Naik P, Aljaar N, Malakar CC. Heterocycles 2023; 106: 925
    • 5h Reetu R, Gujjarappa R, Malakar CC. Asian J. Org. Chem. 2022; 11: e202200163
    • 5i Malakar CC, Singh V. New J. Chem. 2023; 47: 1186
    • 6a Ramesh M, Acharya A, Murugan NA, Ila H, Govindaraju T. ChemBioChem 2021; 22: 3348
    • 6b Putta VP. R. K, Gujjarappa R, Vodnala N, Gupta R, Pujar PP, Malakar CC. Tetrahedron Lett. 2018; 59: 904
    • 6c Putta VP. R. K, Vodnala N, Gujjarappa R, Tyagi U, Garg A, Gupta S, Pujar PP, Malakar CC. J. Org. Chem. 2020; 85: 380
    • 6d Gujjarappa R, Vodnala N, Musib D, Malakar CC. Asian J. Org. Chem. 2022; 11: e202100627
    • 6e Antony PM, Balaji GL, Iniyavan P, Ila H. J. Org. Chem. 2020; 85: 15422
    • 6f Avadhani A, Iniyavan P, Kumar Y, Ila H. J. Org. Chem. 2021; 86: 8508
    • 6g Aljaar N, Ibrahim MM, Younes EA, Al-Noaimi M, Abu-Safieh KA, Ali BF, Kant K, Al-Zaqri N, Sengupta R, Malakar CC. Asian J. Org. Chem. 2023; 12: e202300036
    • 6h Patel CK, Banerjee S, Kant K, Sengupta R, Aljaar N, Malakar CC. Asian J. Org. Chem. 2023; 12: e202300311
    • 6i Saraiah B, Gautam V, Acharya A, Pasha MA, Ila H. ACS Omega 2018; 3: 8355
    • 7a Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4490
    • 7b Fürstner A. Chem. Soc. Rev. 2009; 38: 3208
    • 7c Dorel R, Echavarren AM. Chem. Rev. 2015; 115: 9028
    • 7d Stathakis CI, Gkizisa PL, Zografos AL. Nat. Prod. Rep. 2016; 33: 1093
  • 8 Trost BM, Lautens M. J. Am. Chem. Soc. 1985; 107: 1781
    • 9a Ojima I, Tzamarioudaki M, Li Z, Donovan RJ. Chem. Rev. 1996; 96: 635
    • 9b Trost BM, Krische MJ. Synlett 1998; 1
    • 9c Aubert C, Buisine O, Malacria M. Chem. Rev. 2002; 102: 813
    • 9d Diver ST, Giessert AJ. Chem. Rev. 2004; 104: 1317
    • 9e Trost BM, Frederiksen MU, Rudd MT. Angew. Chem. Int. Ed. 2005; 44: 6630
    • 9f Zhang L, Sun J, Kozmin SA. Adv. Synth. Catal. 2006; 348: 2271
    • 9g Chianese AR, Lee SJ, Gagne MR. Angew. Chem. Int. Ed. 2007; 46: 4042
    • 9h Jiménez-Núñez E, Echavarren AM. Chem. Rev. 2008; 108: 3326
    • 9i Michelet V, Toullec PY, Genet JP. Angew. Chem. Int. Ed. 2008; 47: 4268
    • 9j Lee SI, Chatani N. Chem. Commun. 2009; 371
    • 9k Toullec PY, Michelet V. Top. Curr. Chem. 2011; 302: 31
    • 9l Yamamoto Y. Chem. Rev. 2012; 112: 4736
    • 9m Watson ID. G, Toste FD. Chem. Sci. 2012; 3: 2899
    • 9n Michelet V. In Comprehensive Organic Synthesis II . Knochel P, Molander GA. Elsevier; Amsterdam: 2014: 1483
    • 9o Genet JP, Toullec PY, Michelet V. In Modern Alkyne Chemistry . Trost BM, Li C.-J. Wiley-VCH; Weinheim: 2015: 27
    • 11a Patel CK, Gujjarappa R, Kant K, Ghanta S, Singh V, Kabi AK, Al-Zaqri N, Malakar CC. Adv. Synth. Catal. 2023; 365: 2203
    • 11b Devi EP, Polina S, Kant K, Kabi AK, Al-Zaqri N, Aljaar N, Malakar CC. Heterocycles 2023; 106: 1023
    • 11c Yugandar S, Acharya A, Ila H. J. Org. Chem. 2013; 78: 3948
    • 11d Acharya A, Vijay Kumar S, Saraiah B, Ila H. J. Org. Chem. 2015; 80: 2884
    • 11e Schmidt D, Malakar CC, Conrad J, Beifuss U. Org. Lett. 2014; 16: 4862
    • 12a Yugandar S, Konda S, Ila H. J. Org. Chem. 2016; 81: 2035
    • 12b Kant K, Patel CK, Banerjee S, Naik P, Atta AK, Kabi AK, Malakar CC. ChemistrySelect 2023; 8: e202303988
    • 12c Aljaar N, Gujjarappa R, Al-Refai M, Shtaiwi M, Malakar CC. J. Heterocycl. Chem. 2019; 56: 2730
    • 12d Kushwaha K, Pinter B, Shehzadi SA, Malakar CC, Vande CM, Proft FD, Tehrani KA. Adv. Synth. Catal. 2016; 358: 41
    • 12e Acharya A, Kumar SV, Ila H. Chem. Eur. J. 2015; 21: 17116
    • 13a Ochiai B, Tomita I, Endo T. Macromolecules 1999; 32: 238
    • 13b Ochiai B, Tomita I, Endo T. Chem. Lett. 1998; 6: 563
    • 13c Pineda A, Salcedo R, Del Rio F, Ogawa T. Eur. Polym. J. 1993; 29: 497
    • 13d Kaneko I, Hagihara N. J. Polym. Sci., Polym. Lett. Ed. 1971; 9: 275
    • 14a Teplý F, Stará IG, Starý I, Kollárovič A, Šaman D, Rulíšek L, Fiedler P. J. Am. Chem. Soc. 2002; 124: 9175
    • 14b Xu J, Wang Y, Burton DJ. Org. Lett. 2006; 8: 2555
    • 14c Hilt G, Lueers S, Smolko KI. Org. Lett. 2005; 7: 251
    • 14d Wang Y, Xu J, Burton DJ. J. Org. Chem. 2006; 71: 7780
    • 14e Wang Y, Burton DJ. Org. Lett. 2006; 8: 5295
    • 14f Kang D, Kim J, Oh S, Lee PH. Org. Lett. 2012; 14: 5636
    • 15a Li E, Yao WJ, Xie X, Wang CY, Shao YS, Li YZ. Org. Biomol. Chem. 2012; 10: 2960
    • 15b Du X, Song F, Lu Y, Chen H, Liu Y. Tetrahedron 2009; 65: 183
    • 15c Kuroda H, Hanaki E, Izawa H, Kano M, Itahashi H. Tetrahedron 2004; 60: 1913
    • 15d Roser J, Eberbach W. Tetrahedron Lett. 1984; 25: 2455
    • 15e Miki K, Yokoi T, Nishino F, Kato Y, Washitaka Y, Ohe K, Uemura S. J. Org. Chem. 2004; 69: 1557
    • 15f Chen JL, Zheng F, Huang YG, Quing FL. J. Org. Chem. 2011; 76: 6525
    • 15g Cao H, Xiao WJ, Alper H. J. Org. Chem. 2007; 72: 8562
    • 15h Yao T, Yue D, Larock RC. J. Org. Chem. 2005; 70: 9985
    • 15i Kawasaki T, Saito S, Yamamoto Y. J. Org. Chem. 2002; 67: 2653
    • 15j Ackerman L, Sandmann R, Kaspar L. Org. Lett. 2009; 11: 2031
    • 15k Zhang Y, Herndon JW. Org. Lett. 2003; 5: 2043
    • 15l Gabriele B, Salerno G, Fazio A. J. Org. Chem. 2003; 68: 7853
    • 15m Yoshida M, Al-Amin M, Shishido K. Synthesis 2009; 2454
    • 15n Lee CY, Lin JL, Chiu CC, Lu WD, Wu MJ. J. Org. Chem. 2004; 69: 2106
  • 16 Liu Y, Nishiura M, Wang Y, Hou Z. J. Am. Chem. Soc. 2006; 128: 5592
    • 17a Katayama H, Nakayama M, Nakano T, Wada C, Akamatsu K, Ozawa F. Macromolecules 2004; 37: 13
    • 17b Pasquini C, Fratoddi I, Capitani D, Mannina L, Bassetti M. J. Org. Chem. 2008; 73: 3892
    • 17c Pasquini C, Fratoddi I, Bassetti M. Eur. J. Org. Chem. 2009; 2009: 5224
  • 18 Yamaguchi M, Park H.-J, Ishizuka S, Omata K, Hirama M. J. Med. Chem. 1995; 38: 5015
    • 19a Iverson SL, Uetrecht JP. Chem. Res. Toxicol. 2001; 14: 175
    • 19b Nussbaumer P, Leitner I, Mraz K, Stütz A. J. Med. Chem. 1995; 38: 1831
    • 20a Sauerberg P, Bury PS, Mogensen JP, Deussen HJ, Pettersson I, Fleckner J, Nehlin J, Frederiksen KS, Albrektsen T, Din N, Svensson LA, Ynddal L, Wulff EM, Jeppesen L. J. Med. Chem. 2003; 46: 4883
    • 20b Deussen H.-J, Jeppesen L, Schärer N, Junager F, Bentzen B, Weber B, Weil V, Mozer SJ, Sauerberg P. Org. Process Res. Dev. 2004; 8: 363
  • 21 Kim YB, Lee KH, Sugita K, Yoshida M, Horinouchi S. Oncogene 1999; 18: 2461
  • 22 Zhang HJ, Sydara K, Tan GT, Ma C, Southavong B, Soejarto DD, Pezzuto JM, Fong HH. S. J. Nat. Prod. 2004; 67: 194
    • 23a Trost BM, Hachiya I, McIntosh MC. Tetrahedron Lett. 1998; 39: 6445
    • 23b Trost BM, Gunzner JL, Yasukata T. Tetrahedron Lett. 2001; 42: 3775
    • 24a Trost BM, Masters JT. Chem. Soc. Rev. 2016; 45: 2212
    • 24b Zhou Y, Zhang Y, Wang J. Org. Biomol. Chem. 2016; 14: 6638
  • 25 Yoshida M, Yoshikawa S, Fukuhara T, Yoneda N, Hara S. Tetrahedron 2001; 57: 7143
  • 26 Thadani AN, Rawal VH. Org. Lett. 2002; 4: 4321
  • 27 Chen L, Li C.-J. Tetrahedron Lett. 2004; 45: 2771
  • 28 Gómez AM, Pedregosa A, Barrio A, Valverde S, López JC. Tetrahedron Lett. 2004; 45: 6307
  • 29 Stefani H, Felipe RC, Pereira MP, Zenid G, Gomes M. Tetrahedron Lett. 2005; 46: 563
  • 30 Feuerstein M, Chahen L, Doucet H, Santelli M. Tetrahedron 2006; 62: 112
    • 31a Tsukada N, Ninomiya S, Aoyama Y, Inoue Y. Org. Lett. 2007; 9: 2919
    • 31b Tsukada N, Ninomiya S, Aoyama Y, Inoue Y. Pure Appl. Chem. 2008; 80: 1161
  • 32 Hiyama T. In Metal-Catalyzed Cross-Coupling Reactions . Diederich F, Stang PJ. Wiley-VCH; Berlin: 1998: 421
  • 33 Sakai N, Komatsu R, Uchida N, Ikeda R, Konakahara T. Org. Lett. 2010; 12: 1300
  • 34 Zhou C, Emrich DE, Larock RC. Org. Lett. 2003; 5: 1579
  • 35 Zhou C, Larock RC. J. Org. Chem. 2005; 70: 3765
  • 36 Iwasaki M, Fujino D, Wada T, Kondoh A, Yorimitsu H, Oshima K. Chem. Asian J. 2011; 6: 3190
  • 37 Wen Y, Wang A, Jiang H, Zhu S, Huang L. Tetrahedron Lett. 2011; 52: 5736
  • 38 Mi X, Huang M, Feng Y, Wu Y. Synlett 2012; 23: 1257
  • 39 Ikeda A, Omote M, Kusumoto K, Tarui A, Sato K, Ando A. Org. Biomol. Chem. 2015; 13: 8886
  • 40 Ligny R, Gauthier ES, Yáñez M, Roisnel T, Guillemin JC, Trolez Y. Org. Biomol. Chem. 2017; 15: 6050
  • 41 Smith MK, Tunge JA. Org. Lett. 2017; 19: 5497
  • 42 Lemay AB, Vulic KS, Ogilvie WW. J. Org. Chem. 2006; 71: 3615
  • 43 Praveen C, Kiruthiga P, Perumal PT. Synlett 2009; 1990
  • 44 Lyapkalo IM, Vogel MA. K. Angew. Chem. Int. Ed. 2006; 45: 4019
  • 45 Ranu BC, Chattopadhyay K. Org. Lett. 2007; 9: 2409
  • 46 Ranu BC, Adak L, Chattopadhyay K. J. Org. Chem. 2008; 73: 5609
  • 47 Ito J.-i, Kitase M, Nishiyama H. Organometallics 2007; 26: 6412
  • 48 Weng W, Guo C, Celenligil-Cetin R, Foxman BM, Ozerov OV. Chem. Commun. 2006; 197
  • 49 Katagiri T, Tsurugi H, Satoh T, Miura M. Chem. Commun. 2008; 3405
  • 50 Xu H.-D, Zhang R.-W, Li X, Huang S, Tang W, Hu W.-H. Org. Lett. 2013; 15: 840
  • 51 Kobayashi K, Arisawa M, Yamaguchi M. J. Am. Chem. Soc. 2002; 124: 8528
  • 52 Finkbeiner P, Kloeckner U, Nachtsheim BJ. Angew. Chem. Int. Ed. 2015; 54: 4949
  • 53 Zhu Y, Li T, Qu X, Sun P, Yang H, Mao J. Org. Biomol. Chem. 2011; 9: 7309
  • 54 Hoshi M, Kawamura N, Shirakawa K. Synthesis 2006; 1961
  • 55 Liu F, Ma D. J. Org. Chem. 2007; 72: 4844
  • 56 Saha D, Chatterjee T, Mukherjee M, Ranu BC. J. Org. Chem. 2012; 77: 9379
  • 57 Ahammed S, Kundu D, Ranu BC. J. Org. Chem. 2014; 79: 7391
  • 58 Chinchilla R, Nájera C. Chem. Rev. 2007; 107: 874
  • 59 Doucet H, Hierso J.-C. Angew. Chem. Int. Ed. 2007; 46: 834
  • 60 Cornelissen L, Lefrancq M, Riant O. Org. Lett. 2014; 16: 3024
  • 61 Marshall JA, Chobanian HR, Yanik MM. Org. Lett. 2001; 3: 4107
  • 62 Bates CG, Saejueng P, Venkataraman D. Org. Lett. 2004; 6: 1441
  • 63 Okuro K, Furuune M, Enna M, Miura M, Nomura M. J. Org. Chem. 1993; 58: 4716
  • 64 Liu Y, Yang J, Bao W. Eur. J. Org. Chem. 2009; 2009: 5317
  • 65 Handbook of Organopalladium Chemistry for Organic Synthesis. Negishi E. John Wiley & Sons; New York: 2002
  • 66 Metal-Catalyzed Cross-Coupling Reactions, 2nd ed. . de Meijere A, Diederich F. Wiley-VCH; New York: 2004
  • 67 Cross-Coupling Reactions: A Practical Guide . Miyaura N. Springer; Berlin: 2002
  • 68 Cahiez G, Avedissian H. Synthesis 1998; 1199
  • 69 Tamura M, Kochi JK. J. Am. Chem. Soc. 1971; 93: 1487
  • 70 Hatakeyama T, Yoshimoto Y, Gabriel T, Nakamura M. Org. Lett. 2008; 10: 5341
  • 71 Silva S, Sylla B, Suzenet F, Tatibouet A, Rauter AP, Rollin P. Org. Lett. 2008; 10: 853
  • 72 Carril M, Correa A, Bolm C. Angew. Chem. Int. Ed. 2008; 47: 4862
  • 73 Xie X, Xu X, Li H, Xu X, Yang J, Li Y. Adv. Synth. Catal. 2009; 351: 1263
  • 74 Comasseto JV, Ling LW, Petragnani N, Stefani HA. Synthesis 1997; 373
  • 75 Dabdoub MJ, Dabdoub VB, Marino JP. Tetrahedron Lett. 2000; 41: 437
  • 76 Silveira CC, Braga AL, Vieira AS, Zeni G. J. Org. Chem. 2003; 68: 662
  • 77 Hayashi T, Yamasaki K. Chem. Rev. 2003; 103: 2829
  • 78 Suzuki A, Brown HC. Suzuki Coupling . In Organic Synthesis Via Boranes, Vol. 3. Aldrich; Milwaukee: 2003
  • 79 Kakiuchi F, Matsuura Y, Kan S, Chatani N. J. Am. Chem. Soc. 2005; 127: 5936
  • 80 Crudden CM, Edwards D. Eur. J. Org. Chem. 2003; 2003: 4695
  • 81 Suginome M, Shirakura M, Yamamoto A. J. Am. Chem. Soc. 2006; 128: 14438
  • 82 Zeni G, Ludtke DS, Panatieri RB, Braga AL. Chem. Rev. 2006; 106: 1032
  • 83 Vieira ML, Zinn FK, Comasseto JV. J. Braz. Chem. Soc. 2001; 12: 586
  • 84 Keppler AF, Cerchiaro G, Augusto O, Miyamoto S, Prado F, Di Maschio P, Comasseto JV. Organometallics 2006; 25: 5059
  • 85 Raminelli C, Gargalaka J, Silveira CC, Comasseto JV. Tetrahedron 2007; 63: 8801
  • 86 Kaldhi D, Vodnala N, Gujjarappa R, Kabi AK, Nayak S, Malakar CC. Tetrahedron Lett. 2020; 61: 151775
  • 87 Katayama H, Yari H, Tanaka M, Ozawa F. Chem. Commun. 2005; 4336
  • 88 García-Fernández PD, Iglesias-Sigüenza J, Rivero-Jerez PS, Díez E, Gómez-Bengoa E, Fernández R, Lassaletta JM. J. Am. Chem. Soc. 2020; 142: 16082
  • 89 Singer H, Wilkinson G. J. Chem. Soc. A 1968; 0: 849
  • 90 Sartori G, Pastorio A, Maggi R, Bigi F. Tetrahedron 1996; 52: 8287
  • 91 Nishimura T, Araki H, Maeda Y, Uemura S. Org. Lett. 2003; 5: 2997
  • 92 Nishibayashi Y, Shinoda A, Miyake Y, Matsuzawa H, Sato M. Angew. Chem. Int. Ed. 2006; 45: 4835
  • 93 Yan W, Ye X, Akhmedov NG, Petersen JL, Shi X. Org. Lett. 2012; 14: 2358
  • 94 Ye C, Qian B, Li Y, Su M, Li D, Bao H. Org. Lett. 2018; 20: 3202
  • 95 Rao W, Zhang X, Sze EM. L, Chan PW. H. J. Org. Chem. 2009; 74: 1740
  • 96 Xiao H, Shu X, Ji K, Qi C, Liang Y. New J. Chem. 2007; 31: 2041
  • 97 Yamauchi Y, Onodera G, Sakata K, Yuki M, Miyake Y, Uemura S, Nishibayashi Y. J. Am. Chem. Soc. 2007; 129: 5157
  • 98 Rao W, Chan PW. H. Chem. Eur. J. 2008; 14: 10486
  • 99 Mothe SR, Chan PW. H. J. Org. Chem. 2009; 74: 5887