Synthesis 2017; 49(06): 1206-1213
DOI: 10.1055/s-0036-1588396
feature
© Georg Thieme Verlag Stuttgart · New York

Functionalized Dialdehydes as Promising Scaffolds for Access to Heterocycles and β-Amino Acids: Synthesis of Fluorinated Piperidine and Azepane Derivatives

Renáta A. Ábrahámi
a   Institute of Pharmaceutical Chemistry, University of Szeged, 6720 Szeged, Eötvös u. 6, Hungary   Email: fulop@pharm.u-szeged.hu
,
Loránd Kiss
a   Institute of Pharmaceutical Chemistry, University of Szeged, 6720 Szeged, Eötvös u. 6, Hungary   Email: fulop@pharm.u-szeged.hu
,
Santos Fustero
c   Departamento de Química Orgánica, Facultad de Farmácia, Universidad de Valencia, Av. Vincente Andrés Estellés, s/n 461000 Valencia, Spain
,
Ferenc Fülöp*
a   Institute of Pharmaceutical Chemistry, University of Szeged, 6720 Szeged, Eötvös u. 6, Hungary   Email: fulop@pharm.u-szeged.hu
b   MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, 6720 Szeged, Eötvös u. 6, Hungary
› Author Affiliations
Further Information

Publication History

Received: 19 December 2016

Accepted: 23 December 2016

Publication Date:
24 January 2017 (online)


Abstract

Functionalized dialdehydes are considered important substrates that can be transformed into various substituted heterocyclic, alicyclic, and polysubstituted compounds. Here, we report a robust stereocontrolled procedure for the synthesis of novel functionalized trifluoromethyl-containing piperidine and azepane derivatives, based on oxidative ring cleavage of the C=C bond of diversely substituted cycloalkenes, followed by reductive ring closure of the diformyl intermediates in the presence of fluorine-containing amines.

Supporting Information

 
  • References

    • 1a Malik G, Guinchard X, Crich D. Org. Lett. 2012; 14: 596
    • 1b Gurjar MK, Bera S, Joshi RR, Joshi RA. Heterocycles 2003; 60: 2293
    • 1c Grotenbreg GM, Alphert EC, Buizert AE. M, van der Marel GA, Overkleeft HS, Overhand M. J. Org. Chem. 2004; 69: 8331
    • 1d Caputo F, Cattaneo C, Clerici F, Gelmi ML, Pellegrino S. J. Org. Chem. 2006; 71: 8467
    • 1e Gelmi ML, Cattaneo C, Pellegrino S, Clerici F, Montali M, Martini C. J. Org. Chem. 2007; 72: 9811
    • 1f Robinson A, Thomas GL, Spandl RJ, Welch M, Spring DR. Org. Biomol. Chem. 2008; 6: 2978
    • 2a Wrobleski A, Sahasrabudhe K, Aube J. J. Am. Chem. Soc. 2004; 126: 5475
    • 2b Testero SA, Mangione MI, Suárez AG, Spanevello RA. Eur. J. Org. Chem. 2013; 5236
    • 2c Lee M, Stahl SS, Gellman SH. Org. Lett. 2008; 10: 5317
    • 2d Fricke Y, Kopp N, Wünsch B. Synthesis 2010; 791
    • 2e Perez-Bautista JA, Sosa-Rivadeneyra M, Quintero L, Hopfl H, Tejeda-Dominguez FA, Sartillo-Piscil F. Tetrahedron Lett. 2009; 50: 5572
    • 2f Sousa CA. D, Rizzo-Aguiar F, Vale ML. C, García-Mera X, Caamaño O, Rodríguez-Borges JE. Tetrahedron Lett. 2012; 53: 1029
    • 2g Kumar I, Ramaraju P, Mir NA, Singh A. Org. Biomol. Chem. 2015; 13: 1280 ; and see references cited therein
    • 3a Kiss L, Fülöp F. Chem. Rev. 2014; 114: 1116
    • 3b Grygorenko OO. Tetrahedron 2015; 71: 5169
    • 3c Risseeuw M, Overhand M, Fleet GW. J, Simone MI. Amino Acids 2013; 45: 613
    • 3d Kiss L, Cherepanova M, Fülöp F. Tetrahedron 2015; 71: 2049
    • 3e Juaristi E, Soloshonok V. Enantioselective Synthesis of β-Amino Acids, Second Edition. Wiley; Hoboken: 2005
    • 4a Kiss L, Cherepanova M, Forró E, Fülöp F. Chem. Eur. J. 2013; 19: 2102
    • 4b Cherepanova M, Kiss L, Sillanpaa R, Fülöp F. RSC Adv. 2013; 3: 9757
  • 5 Cherepanova M, Kiss L, Forró E, Fülöp F. Eur. J. Org. Chem. 2014; 403
  • 6 Cherepanova M, Kiss L, Fülöp F. Tetrahedron 2014; 70: 2515
    • 7a Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
    • 7b O’Hagan D. J. Fluorine Chem. 2010; 131: 1071
    • 7c Hagmann WK. J. Med. Chem. 2008; 51: 4359
    • 8a Acena JL, Sorochinsky A, Soloshonok VA. Synthesis 2012; 1591
    • 8b Absalom N, Yamamoto I, O’Hagan D, Hunter L, Chebib M. Aust. J. Chem. 2015; 68: 23
    • 8c Nonn M, Kiss L, Haukka M, Fustero S, Fülöp F. Org. Lett. 2015; 17: 1074; and references therein
    • 8d Ábrahámi RA, Kiss L, Barrio P, Fülöp F. Tetrahedron 2016; 72: 7526
  • 9 Kiss L, Nonn M, Sillanpää R, Haukka M, Fustero S, Fülöp F. Chem. Asian J. 2016; 23: 3376
    • 10a Kazi B, Kiss L, Forró E, Fülöp F. Tetrahedron Lett. 2010; 51: 82
    • 10b Kiss L, Kazi B, Forró E, Fülöp F. Tetrahedron Lett. 2008; 49: 339
    • 10c Kazi B, Kiss L, Forró E, Mándity I, Fülöp F. ARKIVOC 2010; (ix): 31
  • 11 Kiss L, Forró E, Fülöp F. Beilstein J. Org. Chem. 2015; 11: 596
  • 12 Tamanini E, Watkinson M, Todd MH. Tetrahedron: Asymmetry 2006; 17: 2235
  • 13 Barrett S, O’Brien P, Steffens HC, Towers TD, Voith M. Tetrahedron 2000; 56: 9633
  • 14 Gomez-Sanchez E, Marco-Contelles J. Tetrahedron 2005; 61: 1207
  • 15 Pagni RM, Kabalka GW, Hondrogiannis G, Bains S, Anosike P, Kurt R. Tetrahedron 1993; 49: 6743
  • 16 Ishmuratov GY, Yakovleva MP, Shutova MA, Muslukhov RR, Vyrypaev EM, Ishmuratova NM, Tolstikov AG. Russ. J. Org. Chem. 2015; 51: 831