Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(23): 5224-5230
DOI: 10.1055/s-0036-1588546
DOI: 10.1055/s-0036-1588546
paper
Tf2NH-Catalyzed 1,6-Conjugate Addition of Vinyl Azides with p-Quinone Methides: A Mild and Efficient Method for the Synthesis of β-Bis-Arylamides
J. R and B. M. S thank the Council of Scientific and Industrial Research (CSIR), New Delhi for a Senior Research Fellowship. Dr. P. R. Rajamohanan [CSIR-NCL)] is thanked for NMR support, Ms. B. Santhakumari (CSIR-NCL) for the HRMS data; P. K also thanks the Council of Scientific and Industrial Research (CSIR), New Delhi for financial support as part of XII Five Year Plan under the title ORIGIN (CSC0108).Further Information
Publication History
Received: 19 July 2017
Accepted after revision: 19 July 2017
Publication Date:
22 August 2017 (online)
Abstract
Tf2NH-catalyzed tandem 1,6-conjugate addition/Schmidt type rearrangement using vinyl azides and p-quinone methides to access a variety of β-bis-arylated amides is reported. The method is quick, efficient, mild, and high yielding with broad substrate scope.
Key words
vinyl azide - p-quinone methide - Brønsted acid - 1,6-conjugate addition - rearrangement - β-bis-arylamidesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588546.
- Supporting Information
-
References
- 1a Parella R. Gopalakrishnan B. Arulananda Babu S. J. Org. Chem. 2013; 78: 11911
- 1b Mu D. Gao F. Chen G. He G. ACS Catal. 2017; 7: 1880
- 1c Yang X. Shan G. Wang L. Rao Y. Tetrahedron Lett. 2016; 57: 819
- 1d Kerdphon S. Quan X. Parihar VS. Andersson PG. J. Org. Chem. 2015; 80: 11529
- 1e Wasa M. Yu J.-Q. Tetrahedron 2010; 66: 4811
- 2a Turner AB. Q. Rev. Chem. Soc. 1964; 18: 347
- 2b Peter MG. Angew. Chem. Int. Ed. 1989; 28: 555
- 2c Angle SR. Turnbull KD. J. Am. Chem. Soc. 1989; 111: 1136
- 2d Angle SR. Louie MS. Mattson HL. Yang W. Tetrahedron Lett. 1989; 30: 1193
- 3a Takao K.-i. Sasaki T. Kozaki T. Yanagisawa Y. Tadano K.-i. Kawashima A. Shinonaga H. Org. Lett. 2001; 3: 4291
- 3b Groszek G. Błażej S. Brud A. Świerczyński D. Lemek T. Tetrahedron 2006; 62: 2622
- 4a Hart DJ. Cain PA. Evans DA. J. Am. Chem. Soc. 1978; 100: 1548
- 4b Hamels D. Dansette PM. Hillard EA. Top S. Vessières A. Herson P. Jaouen G. Mansuy D. Angew. Chem. Int. Ed. 2009; 48: 9124
- 4c Sridar C. D’Agostino J. Hollenberg PF. Drug Metab. Dispos. 2012; 40: 2280
- 5a Dehn R. Katsuyama Y. Weber A. Gerth K. Jansen R. Steinmetz H. Höfle G. Müller R. Kirschning A. Angew. Chem. Int. Ed. 2011; 50: 3882
- 5b Messiano GB. da Silva T. Nascimento IR. Lopes LM. Phytochemistry 2009; 70: 590
- 6a Ke M. Song Q. Adv. Synth. Catal. 2017; 359: 384
- 6b Molleti N. Kang JY. Org. Lett. 2017; 19: 958
- 6c Ge L. Lu X. Cheng C. Chen J. Cao W. Wu X. Zhao G. J. Org. Chem. 2016; 81: 9315
- 6d Huang B. Shen Y. Mao Z. Liu Y. Cui S. Org. Lett. 2016; 18: 4888
- 7a Jadhav AS. Anand RV. Org. Biomol. Chem. 2017; 15: 56
- 7b Mahesh S. Kant G. Anand RV. RSC Adv. 2016; 6: 80718
- 7c Goswami P. Anand RV. ChemistrySelect 2016; 1: 2556
- 7d Arde P. Anand RV. RSC Adv. 2016; 6: 77111
- 7e Arde P. Anand RV. Org. Biomol. Chem. 2016; 14: 5550
- 7f Ramanjaneyulu BT. Mahesh S. Anand RV. Org. Lett. 2015; 17: 3952
- 7g Reddy V. Anand RV. Org. Lett. 2015; 17: 3390
- 8a Zhao K. Zhi Y. Wang A. Enders D. ACS Catal. 2016; 6: 657
- 8b Deng Y.-H. Zhang X.-Z. Yu K.-Y. Yan X. Du J.-Y. Huang H. Fan C.-A. Chem. Commun. 2016; 52: 4183
- 8c Jarava-Barrera C. Parra A. López A. Cruz-Acosta F. Collado-Sanz D. Cárdenas DJ. Tortosa M. ACS Catal. 2016; 6: 442
- 8d Zhang X.-Z. Deng Y.-H. Yan X. Yu K.-Y. Wang F.-X. Ma X.-Y. Fan C.-A. J. Org. Chem. 2016; 81: 5655
- 8e Shen Y. Qi J. Mao Z. Cui S. Org. Lett. 2016; 18: 2722
- 9a Dong N. Zhang ZP. Xue XS. Li X. Cheng JP. Angew. Chem. Int. Ed. 2016; 55: 1460
- 9b Caruana L. Kniep F. Johansen TK. Poulsen PH. Jørgensen KA. J. Am. Chem. Soc. 2014; 136: 15929
- 9c Chu WD. Zhang LF. Bao X. Zhao XH. Zeng C. Du JY. Zhang GB. Wang FX. Ma XY. Fan CA. Angew. Chem. Int. Ed. 2013; 52: 9229
- 10a Gao S. Xu X. Yuan Z. Zhou H. Yao H. Lin A. Eur. J. Org. Chem. 2016; 3006
- 10b Yuan Z. Wei W. Lin A. Yao H. Org. Lett. 2016; 18: 3370
- 10c Li X. Xu X. Wei W. Lin A. Yao H. Org. Lett. 2016; 18: 428
- 10d Yang C. Gao S. Yao H. Lin A. J. Org. Chem. 2016; 81: 11956
- 10e Yuan Z. Fang X. Li X. Wu J. Yao H. Lin A. J. Org. Chem. 2015; 80: 11123
- 10f Gai K. Fang X. Li X. Xu J. Wu X. Lin A. Yao H. Chem. Commun. 2015; 51: 15831
- 11a Zhang X.-Z. Deng Y.-H. Gan K.-J. Yan X. Yu K.-Y. Wang F.-X. Fan C.-A. Org. Lett. 2017; 19: 1752
- 11b Yuan Z. Gai K. Wu Y. Wu J. Lin A. Yao H. Chem. Commun. 2017; 53: 3485
- 11c Roiser L. Waser M. Org. Lett. 2017; 19: 2338
- 12a Jung N. Bräse S. Angew. Chem. Int. Ed. 2012; 51: 12169
- 12b Chiba S. Chimia 2012; 66: 377
- 12c Chiba S. Synlett 2012; 23: 21
- 12d Organic Azides: Syntheses and Applications . Bräse S. Banert K. Wiley; New York: 2010
- 12e Stokes BJ. Driver TG. Eur. J. Org. Chem. 2011; 4071
- 12f Driver TG. Org. Biomol. Chem. 2010; 8: 3831
- 12g Liu Z. Liu J. Zhang L. Liao P. Song J. Bi X. Angew. Chem. Int. Ed. 2014; 53: 5305
- 12h Liu Z. Liao P. Bi X. Org. Lett. 2014; 16: 3668
- 12i Hu B. DiMagno SG. Org. Biomol. Chem. 2015; 13: 3844
- 13a Hassner A. Ferdinandi ES. Isbister RJ. J. Am. Chem. Soc. 1970; 92: 1672
- 13b Moore HW. Shelden HR. Weyler WJr. Tetrahedron Lett. 1969; 1243
- 14a Zhang F. Wang Y. Lonca GH. Zhu X. Chiba S. Angew. Chem. Int. Ed. 2014; 53: 4390
- 14b Zhang F. Zhu X. Chiba S. Org. Lett. 2015; 16: 6136
- 14c Zhu X. Wang Y.-F. Zhang F.-L. Chiba S. Chem. Asian J. 2014; 9: 2458
- 14d The Chemistry of Enamines . Rappoport Z. Wiley; New York: 1994
- 14e Stork G. Brizzolara A. Landesman H. Szmuszkovicz J. Terrell R. J. Am. Chem. Soc. 1963; 85: 207
- 14f Zhang Z. Kumar RK. Li G. Wu D. Bi X. Org. Lett. 2015; 17: 6190
- 15 Zhang F.-L. Zhu X. Chiba S. Org. Lett. 2015; 17: 3138
- 16 Lin C. Shen Y. Huang B. Liu Y. Cui S. J. Org. Chem. 2017; 82: 3950