Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(14): 3157-3164
DOI: 10.1055/s-0036-1589012
DOI: 10.1055/s-0036-1589012
paper
Enantioselective Reduction of 3-Substituted Quinolines with a Cyclopentadiene-Based Chiral Brønsted Acid
We are grateful for the financial support of the National Science Foundation of China (21302116), the Fundamental Research Funds for the Central Universities (GK201703018), and Shaanxi Normal University.Further Information
Publication History
Received: 04 February 2017
Accepted after revision: 29 March 2017
Publication Date:
08 May 2017 (online)
Abstract
Enantioselective reduction of 3-substituted quinolines has been achieved using a cyclopentadiene-based chiral Brønsted acid as catalyst and Hantzsch ester as hydrogen donor, affording the corresponding tetrahydroquinolines in good enantioselectivities.
Key words
tetrahydroquinolines - transfer hydrogenation - 3-substituted quinolones - enantioselectivity - chiral Brønsted acidSupporting Information
- Supporting information for this article is available online at https://doi.org /10.1055/s-0036-1589012.
- Supporting Information
-
References
- 1a Katritzky AR. Rachwal S. Rachwal B. Tetrahedron 1996; 52: 15031
- 1b Sridharan V. Suryavanshi PA. Menendez JC. Chem. Rev. 2011; 111: 7157
- 2 Yeh RW. Jang I.-K. Am. Heart J. 2006; 151: 1131
- 3a Abe H. MedChem News 2007; 17: 18
- 3b Kato K. Terauchi J. Suzuki N. Takekawa S. WO 2001025228, 2001
- 3c Sawai Y. Yamane T. Ikeuchi M. Kawaguchi S. Yamada M. Yamano M. Org. Process Res. Dev. 2010; 14: 1110
- 4 Heier RF. Dolak LA. Duncan JN. Hyslop DK. Lipton MF. Martin IJ. Mauragis MA. Piercey MF. Nichols NF. Schreur PJ. K. D. Smith MW. Moon MW. J. Med. Chem. 1997; 40: 639
- 5 Ghosh S. Santulli RJ. Kinney WA. DeCorte BL. Liu L. Lewis JM. Proost JC. Leo GC. Masucci J. Hageman WE. Thompson AS. Chen I. Kawahama R. Tuman WE. Galemmo RA. Jr. Johnson DA. Damiano BP. Maryanoff BE. Bioorg. Med. Chem. Lett. 2004; 14: 5937
- 6 Wang W.-B. Lu S.-M. Yang P.-Y. Han X.-W. Zhou Y.-G. J. Am. Chem. Soc. 2003; 125: 10536
- 7a Glorius F. Org. Biomol. Chem. 2005; 3: 4171
- 7b Zhou YG. Acc. Chem. Res. 2007; 40: 1357
- 7c Kuwano R. Heterocycles 2008; 76: 909
- 7d Wang DS. Chen QA. Lu SM. Zhou YG. Chem. Rev. 2012; 112: 2557
- 8a Lu S.-M. Han X.-W. Zhou Y.-G. Adv. Synth. Catal. 2004; 346: 909
- 8b Wang D.-W. Zeng W. Zhou Y.-G. Tetrahedron: Asymmetry 2007; 18: 1103
- 8c Wang X.-B. Zhou Y.-G. J. Org. Chem. 2008; 73: 5640
- 8d Wang D.-S. Zhou J. Wang D.-W. Guo Y.-L. Zhou Y.-G. Tetrahedron Lett. 2010; 51: 525
- 8e Wang D.-S. Zhou Y.-G. Tetrahedron Lett. 2010; 51: 3014
- 8f Zhang DY. Wang DS. Wang MC. Yu CB. Gao K. Zhou YG. Synthesis 2011; 2796
- 9a Xu LJ. Lam KH. Ji JX. Fan QH. Lo WH. Chan AS. C. Chem. Commun. 2005; 1390
- 9b Lam KH. Xu LJ. Feng LC. Fan QH. Lam FL. Lo WH. Chan AS. C. Adv. Synth. Catal. 2005; 347: 1755
- 9c Chan SH. Lam KH. Li YM. Xu LJ. Tang WJ. Lam FL. Lo WH. Yu WY. Fan QH. Chan AS. C. Tetrahedron: Asymmetry 2007; 18: 2625
- 9d Tang WJ. Zhu S.-F. Xu LJ. Zhou QL. Fan QH. Zhou HF. Lam K. Chan AS. C. Chem. Commun. 2007; 613
- 9e Wang ZJ. Deng GJ. Li Y. He YM. Tang WJ. Fan QH. Org. Lett. 2007; 9: 1243
- 9f Tang WJ. Sun YW. Xu LJ. Wang TL. Fan QH. Lam KH. Chan AS. C. Org. Biomol. Chem. 2010; 8: 3464
- 9g Tang WJ. Tan J. Xu LJ. Lam KH. Fan QH. Chan AS. C. Adv. Synth. Catal. 2010; 352: 1055
- 9h Wang TL. Ouyang GH. He YM. Fan QH. Synlett 2011; 939
- 9i Wang TL. Zhuo LG. Li ZW. Chen F. Ding ZY. He YM. Fan QH. Xiang JF. Yu ZX. Chan AS. C. J. Am. Chem. Soc. 2011; 133: 9878
- 9j Ding ZY. Wang TL. He YM. Chen F. Zhou HF. Fan QH. Guo QX. Chan AS. C. Adv. Synth. Catal. 2013; 355: 3727
- 9k Yang ZS. Chen F. He YM. Yang NF. Fan QH. Catal. Sci. Technol. 2014; 4: 2887
- 9l Luo YE. He YM. Fan QH. Chem. Rec. 2016; 16: 2697
- 9m Wang TL. Chen Y. Ouyang GH. He YM. Li ZY. Fan QH. Chem. Asian J. 2016; 11: 2773
- 9n Ma WP. Zhang JW. Xu C. Chen F. He YM. Fan QH. Angew. Chem. Int. Ed. 2016; 55: 12891
- 10a Reetz M. Li X. Chem. Commun. 2006; 2159
- 10b Deport C. Buchotte M. Abecassis K. Tadaoka H. Ayad T. Ohshima T. Genêt JP. Mashima K. Ratovelomanana-Vidal V. Synlett 2007; 2743
- 10c Mršić N. Lefort L. Boogers JA. F. Minnaard AJ. Feringa BL. de Vries JG. Adv. Synth. Catal. 2008; 350: 1081
- 10d Lu SM. Bolm C. Adv. Synth. Catal. 2008; 350: 1101
- 10e Eggenstein M. Thomas A. Theuerkauf J. Franció G. Leitner W. Adv. Synth. Catal. 2009; 351: 725
- 10f Tadaoka H. Cartigny D. Nagano T. Gosavi T. Ayad T. Genêt JP. Ohshima T. Ratovelomanana-Vidal V. Mashima K. Chem. Eur. J. 2009; 15: 9990
- 10g Maj AM. Suisse I. Meliet C. Hardouin C. Agbossou-Niedercorn F. Tetrahedron Lett. 2012; 53: 4747
- 10h Maj AM. Suisse I. Hardouin C. Agbossou-Niedercorn F. Tetrahedron 2013; 69: 9322
- 10i John J. Wilson-Konderka C. Metallinos C. Adv. Synth. Catal. 2015; 357: 2071
- 10j Kuwano R. Ikeda R. Hirasada K. Chem. Commun. 2015; 51: 7558
- 10k Wang X. Li J. Lu SM. Liu Y. Li C. Chin. J. Catal. 2015; 36: 1170
- 10l Wen JL. Tan RC. Liu SD. Zhao QY. Zhang XM. Chem. Sci. 2016; 7: 3047
- 11a Rueping M. Antonchick AP. Theissmann T. Angew. Chem. Int. Ed. 2006; 45: 3683
- 11b Rueping M. Theissmann T. Raja S. Bats JW. P. Adv. Synth. Catal. 2008; 350: 1001
- 11c Guo Q.-S. Du D.-M. Xu J. Angew. Chem. Int. Ed. 2008; 47: 759
- 11d Wang C. Li C. Wu X. Pettman A. Xiao J. Angew. Chem. Int. Ed. 2009; 48: 6524
- 11e Rueping M. Theissmann T. Stoeckel M. Antonchick AP. Org. Biomol. Chem. 2011; 9: 6844
- 11f Tu XF. Gong LZ. Angew. Chem. Int. Ed. 2012; 51: 11346
- 11g Qiao X. Zhang ZG. Bao ZB. Su BG. Xing HB. Yang QW. Ren QL. RSC Adv. 2014; 4: 42566
- 11h More GV. Bhanage BM. Tetrahedron: Asymmetry 2015; 26: 1174
- 11i Shugrue CR. Miller SJ. Angew. Chem. Int. Ed. 2015; 54: 11173
- 11j Wang P. Jia YE. Zhao JZ. Zhao D. Yuan R. Da C S. Asian J. Org. Chem. 2015; 4: 430
- 11k Wang J. Chen MW. Ji Y. Hu SB. Zhou YG. J. Am. Chem. Soc. 2016; 138: 10413
- 11l Aillerie A. de Talencé VL. Dumont C. Pellegrini S. Capet F. Bousquet T. Pélinski L. New J. Chem. 2016; 40: 9034
- 12a Wang D.-W. Wang X.-B. Wang D.-S. Lu S.-M. Zhou Y.-G. Li Y.-X. J. Org. Chem. 2009; 74: 2780
- 12b Chen ZP. Ye ZS. Chen MW. Zhou YG. Synthesis 2013; 45: 3239
- 12c Cai XF. Chen MW. Ye ZS. Guo RN. Shi L. Li YQ. Zhou YG. Chem. Asian J. 2013; 8: 1381
- 12d Cai XF. Huang WX. Chen ZP. Zhou YG. Chem. Commun. 2014; 50: 9588
- 12e Chen MW. Cai XF. Chen ZP. Shi L. Zhou YG. Chem. Commun. 2014; 50: 12526
- 12f Guo RN. Chen ZP. Cai XF. Zhou YG. Synthesis 2014; 46: 2751
- 12g Cai XF. Guo RN. Feng GS. Wu B. Zhou YG. Org. Lett. 2014; 16: 2680
- 12h Zhang ZH. Du HF. Org. Lett. 2015; 17: 2816
- 12i Zhang ZH. Du HF. Org. Lett. 2015; 17: 6266
- 12j Zhou J. Zhang QF. Zhao WH. Jiang GF. Org. Biomol. Chem. 2016; 14: 6937
- 13a Gheewala CD. Collins BE. Lambert TH. Science (Washington, D. C.) 2016; 351: 961
- 13b Fleischer I. Angew. Chem. Int. Ed. 2016; 55: 7582
- 14 Ferraboschi P. Ciceri S. Grisenti P. Tetrahedron: Asymmetry 2013; 24: 1142
- 15 Zhang LJ. Qiu RY. Xue X. Pan YX. Xu CH. Li HR. Xu LJ. Adv. Synth. Catal. 2015; 357: 3529
- 16a Lee A. Younai A. Price CK. Izquierdo J. Mishra RK. Scheidt KA. J. Am. Chem. Soc. 2014; 136: 10589
- 16b Long Y. Shi JL. Liang HQ. Zeng YL. Cai Q. Synthesis 2015; 47: 2844
- 17 Chakravarty S. Hart BP. Jain RP. WO 2011103460, 2011
- 18 Cai J. Crespo A. Du X. Dubois BG. Guiadeen D. Kothandaraman S. Liu P. Liu R. Quan W. Sinz C. Wang L. WO 2016045127, 2016
For selected reviews, see:
For recent reviews, see:
For examples of catalyzed asymmetric transfer hydrogenation of quinolines, see:
For examples of reduction of 2,3-disubstituted quinolines, see: