Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(23): 5176-5182
DOI: 10.1055/s-0036-1589088
DOI: 10.1055/s-0036-1589088
paper
Practical Preparation of Octa- and Tetrabromoperylene Diimides and Derivatives Thereof
Further Information
Publication History
Received: 30 May 2017
Accepted after revision: 04 July 2017
Publication Date:
02 August 2017 (online)
Dedicated to Prof. V. Snieckus on the occasion of his 80th birthday
Abstract
A mild synthesis of fully brominated perylene dianhydride and diimides in one step from easily available unsubstituted precursors is presented. The partial reduction of ortho-bromo substituents with hydrazine hydrate allowed for a gram-scale synthesis of a valuable intermediate, 1,6,7,12-tetrabromoperylene diimide. Several new twisted fully core-substituted perylene diimide derivatives having sulfur, nitrogen, or oxygen substituents were synthesized using regioselective nucleophilic substitution reactions.
Key words
octabromoperylene diimide - tetrabromoperylene diimide - anion radical - core-twisted perylene diimides - chromophoresSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1589088.
- Supporting Information
-
References
- 1 Huang C. Barlow S. Marder SR. J. Org. Chem. 2011; 76: 2386
- 2a Li C. Wonneberger H. Adv. Mater. 2012; 24: 613
- 2b Kozma E. Catellani M. Dyes Pigm. 2013; 98: 160
- 2c Würthner F. Stolte M. Chem. Commun. 2011; 47: 5109
- 3a Gsänger M. Oh JH. Könemann M. Höffhen HW. Krause AM. Bao Z. Würthner F. Angew. Chem. Int. Ed. 2010; 49: 740
- 3b Xie Z. Xiao B. He Z. Zhang W. Wu X. Wu H. Würthner F. Wang C. Xie F. Liu L. Ma Y. Wong WY. Cao Y. Mater. Horiz. 2015; 2: 514
- 3c Brooks AJ. Michael JA. Youn MY. Facchetti A. Marks TJ. Wasielewski MR. Angew. Chem. Int. Ed. 2004; 43: 6363
- 3d Lista M. Orentas E. Areephong J. Charbonnaz P. Wilson A. Zhao Y. Bolag A. Sforazzini G. Turdean R. Hayashi H. Domoto Y. Sobczuk A. Sakai N. Matile S. Org. Biomol. Chem. 2013; 11: 1754
- 3e Charbonnaz P. Zhao Y. Turdean R. Lascano S. Sakai N. Matile S. Chem. Eur. J. 2014; 20: 17143
- 4a Würthner F. Saha-Möller CR. Fimmel B. Ogi S. Leowanawat P. Schmidt D. Chem. Rev. 2016; 116: 962
- 4b Xie Z. Stepanenko V. Radacki K. Würthner F. Chem. Eur. J. 2012; 18: 7060
- 4c Xie Z. Würthner F. Org. Lett. 2010; 12: 3204
- 4d Safont-Sempere MM. Osswald P. Radacki K. Würthner F. Chem. Eur. J. 2010; 25: 7380
- 4e Osswald P. Würthner F. J. Am. Chem. Soc. 2007; 129: 14319
- 4f Kaiser TE. Wang H. Stepanenko V. Würthner F. Angew. Chem. Int. Ed. 2007; 46: 5541
- 4g Chen Z. Baumeister U. Tschierske C. Würthner F. Chem. Eur. J. 2007; 13: 450
- 4h Wang W. Shaller AD. Li AD. Q. J. Am. Chem. Soc. 2008; 130: 8271
- 4i Shaller AD. Wang W. Gan H. Li AD. Q. Angew. Chem. Int. Ed. 2008; 47: 7705
- 5 Wang C. Miros FN. Mareda J. Sakai N. Matile S. Angew. Chem. Int. Ed. 2016; 55: 14422
- 6a Leowanawat P. Nowak-Krol A. Würthner F. Org. Chem. Front. 2016; 3: 537
- 6b Lin MJ. Schulze M. Radacki K. Würthner F. Chem. Commun. 2013; 49: 9107
- 6c Qian H. Liu C. Wang Z. Zhu D. Chem. Commun. 2006; 4587
- 6d Zagranyarski Y. Chen L. Jänscht D. Gessner T. Li C. Müllen K. Org. Lett. 2014; 16: 2814
- 6e Qu J. Kohl C. Pottek M. Müllen K. Angew. Chem. Int. Ed. 2004; 43: 1528
- 7a Würthner F. Stepanenko V. Chen Z. Saha-Möller CR. Kocher N. Stalke D. J. Org. Chem. 2014; 69: 7933
- 7b Rajasingh P. Cohen R. Shirman E. Shimon LJ. W. Rybtchinski B. J. Org. Chem. 2007; 72: 5973
- 7c Seifert S. Schmidt D. Würthner F. Chem. Sci. 2015; 6: 1663
- 7d Yue W. Jiang W. Bockmann M. Doltsinis NL. Wang Z. Chem. Eur. J. 2014; 20: 5209
- 7e Sadrai M. Hadel L. Sauers RR. Husain S. Krogh-Jespersen K. Westbrook JD. Bird GR. J. Phys. Chem. 1992; 96: 7988
- 7f Qiu W. Chen S. Sun X. Liu Y. Zhu D. Org. Lett. 2006; 8: 867
- 7g Gao J. Xiao C. Jiang W. Wang Z. Org. Lett. 2014; 16: 394
- 8 Kumar Y. Kumar S. Kumar Keshri S. Shukla J. Singh SS. Thakur TS. Denti M. Facchetti A. Mukhopadhyay P. Org. Lett. 2016; 18: 472
- 9 Könemann M. Mattern G. Patent WO2009/000831A1, 2008
- 10 Hu Y. Qin Y. Gao X. Zhang F. Di C. Zhao Z. Li H. Zhu D. Org. Lett. 2011; 14: 292
- 11 This product has recently been obtained, but in poor yield; see ref. 8.
- 12a Misek J. Vargas Jentzsch A. Sakurai S. Emery D. Mareda J. Matile S. Angew. Chem. Int. Ed. 2010; 49: 7680
- 12b Zhao Y. Huang G. Besnard C. Mareda J. Sakai N. Matile S. Chem. Eur. J. 2015; 21: 6202
- 13 Sato R. Goto T. Takikawa Y. Takizawa S. Synthesis 1980; 615
- 14 Lin MJ. Fimmel B. Radacki K. Würthner F. Angew. Chem. Int. Ed. 2011; 50: 10847
- 15 The absorption maximum (790 nm) of octabromo PDI radical anion was reported in a different solvent (MeCN) in ref. 8.
- 16 Zhang Y. Cai LZ. Wang CY. Lai GQ. Shen YJ. New J. Chem. 2008; 32: 1968
- 17 Queste M. Cadiou C. Pagoaga B. Giraudet L. Hoffmann N. New J. Chem. 2010; 34: 2537
Reviews:
Selected recent examples:
Selected synthetic applications of tetrahalogenated PDIs: