CC BY-ND-NC 4.0 · Synthesis 2019; 51(01): 1-30
DOI: 10.1055/s-0037-1610386
review
Copyright with the author

Palladium-Catalyzed Asymmetric Allylic Alkylation Strategies for the Synthesis of Acyclic Tetrasubstituted Stereocenters

Department of Chemistry, Stanford University, 335 Campus Drive, Stanford, CA 94305, USA   Email: bmtrost@stanford.edu   Email: schultz2@stanford.edu
,
› Author Affiliations
Funding was provided in part by the Tamaki Foundation.
Further Information

Publication History

Received: 23 October 2018

Accepted: 24 October 2018

Publication Date:
05 December 2018 (online)


Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue

Abstract

Over the past 20 years, the asymmetric synthesis of acyclic tetrasubstituted stereocenters by Pd-catalyzed asymmetric allylic alkylation (Pd-AAA) strategies has seen considerable growth. Despite the inherent difficulty in accessing acyclic tetrasubstituted stereocenters, creative approaches toward this problem have resulted in high stereoinduction on both electrophilic and nucleophilic reaction partners. Much of this chemistry has paved the way for unique solutions in Mo-, Ir-, and Rh-AAA, with many complimentary methods arising due to the unique regiochemical outcomes of AAA outside of Pd catalysis.

1 Introduction

2 Stereocontrol on Prochiral Electrophiles

3 Stereocontrol on Prochiral Nucleophiles

4 Temporary Cyclic Pronucleophiles

5 Allylic Alkylation with Other Metals

6 Conclusions and Outlook

 
  • References

    • 1a Trost BM, Van Vranken DL. Chem. Rev. 1996; 96: 395
    • 1b Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
    • 1c Trost BM. J. Org. Chem. 2004; 69: 5813
    • 1d Trost BM, Machacek MR, Aponick A. Acc. Chem. Res. 2006; 39: 747
    • 1e Trost BM, Fandrick DR. Aldrichimica Acta 2007; 40: 59
  • 2 Although the term quaternary stereocenter is sometimes used interchangeably with tetrasubstituted stereocenter, for the sake of this review, quaternary stereocenters will only be applied to all-carbon quaternary stereocenters
  • 3 Trost BM, Jiang C. J. Am. Chem. Soc. 2001; 123: 12907
  • 4 Trost BM, McEachern EJ, Toste FD. J. Am. Chem. Soc. 1998; 120: 12702
  • 5 Trost BM, McEachern EJ. J. Am. Chem. Soc. 1999; 121: 8649
  • 6 Trost BM, Jiang C, Hammer K. Synthesis 2005; 3335
  • 7 Trost BM, Bunt RC, Lemoine R, Calkins TL. J. Am. Chem. Soc. 2000; 122: 5968
  • 8 Trost BM, Calkins TL, Oertelt C, Zambrano J. Tetrahedron Lett. 1998; 39: 1713
  • 9 The π-allyl complex that places the higher priority group cis to the central hydrogen is denoted as the syn isomer
  • 10 Trost BM, Toste FD. J. Am. Chem. Soc. 1999; 121: 4545
  • 11 Feng J, Holmes M, Krische MJ. Chem. Rev. 2017; For a review on metal-catalyzed synthesis of acyclic quaternary stereocenters: 117: 12564
  • 12 For a review on diversity-oriented synthesis: Galloway WR. J. D, Isidro-Llobet A, Spring DR. Nat. Commun. 2010; 1: 80; DOI: 10.1038/ncomms1081
  • 13 Du D, Li L, Xie Z. Angew. Chem. Int. Ed. 2009; 48: 7853
  • 14 Trost BM, Dong G, Vance JA. Chem.–Eur. J. 2010; 16: 6265
  • 15 Fagnou K, Lautens M. Angew. Chem. Int. Ed. 2002; 41: 26
  • 16 Trost BM, Andersen NG. J. Am. Chem. Soc. 2002; 124: 14320
  • 17 Trost BM, Tang W, Schulte JL. Org. Lett. 2000; 2: 4013
  • 18 Mandal AK, Schneekloth JS, Crews CM. Org. Lett. 2005; 7: 3645
  • 19 Zeng M, Murphy SK, Herzon SB. J. Am. Chem. Soc. 2017; 139: 16377
  • 20 Trost BM, Malhotra S, Chan WH. J. Am. Chem. Soc. 2011; 133: 7328
  • 21 Zhang P, Le H, Kyne RE, Morken JP. J. Am. Chem. Soc. 2011; 133: 9716
  • 22 Ardolino MJ, Morken JP. Tetrahedron 2015; 71: 6409
  • 23 Hou X.-L, Sun N. Org. Lett. 2004; 6: 4399
    • 24a Trost BM, Toste FD. J. Am. Chem. Soc. 1999; 121: 3543
    • 24b Trost BM, Toste FD. J. Am. Chem. Soc. 2003; 125: 3090
  • 25 Sawamura M, Nagata H, Sakamoto H, Ito Y. J. Am. Chem. Soc. 1992; 114: 2586
  • 26 Sawamura M, Nakayama Y, Tang W.-M, Ito Y. J. Org. Chem. 1996; 61: 9090
  • 27 Sawamura M, Sudoh M, Ito Y. J. Am. Chem. Soc. 1996; 118: 3309
  • 28 Mizuho Y, Kasuga N, Komiya S. Chem. Lett. 1991; 2127
  • 29 Sawamura M, Hamashima H, Ito Y. J. Am. Chem. Soc. 1992; 114: 8295
  • 30 Kuwano R, Ito Y. J. Am. Chem. Soc. 1999; 121: 3236
  • 31 Kuwano R, Nishio R, Ito Y. Org. Lett. 1999; 1: 837
  • 32 Kuwano R, Uchida K, Ito Y. Org. Lett. 2003; 5: 2177
  • 33 Zhang K, Peng Q, Hou X.-L, Wu Y.-D. Angew. Chem. Int. Ed. 2008; 47: 1741
  • 34 Jiang G, List B. Angew. Chem. Int. Ed. 2011; 50: 9471
  • 35 Ohmatsu K, Ito M, Kurieda T, Ooi T. Nat. Chem. 2012; 4: 473
  • 36 Fujita T, Yamamoto T, Morita Y, Chen H, Shimizu Y, Kanai M. J. Am. Chem. Soc. 2018; 140: 5899
  • 37 Belanger E, Houze C, Guimond N, Cantin K, Paquin J.-F. Chem. Commun. 2008; 3251
  • 38 Wang W, Shen H, Wan X.-L, Chen Q.-Y, Guo Y. J. Org. Chem. 2014; 79: 6347
  • 39 Weaver JD, Recio AIII, Grenning AJ, Tunge JA. Chem. Rev. 2011; 111: 1846
  • 40 Keith JA, Behenna DC, Sherden N, Mohr JT, Ma S, Marinescu SC, Nielsen RJ, Oxgaard J, Stoltz BM, Goddard WA. J. Am. Chem. Soc. 2012; 134: 19050
  • 41 Trost BM, Xu J, Schmidt T. J. Am. Chem. Soc. 2009; 131: 18343
  • 42 Trost BM, Xu J, Reichle M. J. Am. Chem. Soc. 2007; 129: 282
  • 43 Ariyarathna J, Tunge JA. Org. Biomol. Chem. 2014; 12: 8386
  • 44 Minko Y, Pasco M, Lercher L, Botoshansky M, Marek I. Nature (London) 2012; 490: 522
  • 45 Starkov P, Moore JT, Duquette DC, Stoltz BM, Marek I. J. Am. Chem. Soc. 2017; 139: 9615
  • 46 Alexy EJ, Zhang H, Stoltz BM. J. Am. Chem. Soc. 2018; 140: 10109
    • 47a Li BX, Le DN, Mack KA, McClory A, Lim N.-K, Cravillion T, Savage S, Han C, Collum DB, Zhang H, Gosselin F. J. Am. Chem. Soc. 2017; 139: 10777
    • 47b Mack KA, McClory A, Zhang H, Gosselin F, Collum DB. J. Am. Chem. Soc. 2017; 139: 12182
  • 48 Kuwano R, Naoki I, Murakami M. Chem. Commun. 2005; 3951
  • 49 Maki K, Kanai M, Shibasaki M. Tetrahedron 2007; 63: 4250
    • 50a Trost BM, Ariza X. J. Am. Chem. Soc. 1999; 121: 10727
    • 50b Trost BM, Ariza X. Angew. Chem., Int. Ed. Engl. 1997; 36: 2635
    • 51a Trost BM, Czabaniuk LC. J. Am. Chem. Soc. 2012; 134: 5778
    • 51b Trost BM, Czabaniuk LC. Chem.–Eur. J. 2013; 19: 15210
  • 52 Trost BM, Lee CB. J. Am. Chem. Soc. 1998; 120: 6818
  • 53 Seto M, Roizen JL, Stoltz BM. Angew. Chem. Int. Ed. 2008; 47: 6873
  • 54 Estipona BI, Pritchett BP, Craig RA, Stoltz BM. Tetrahedron 2016; 72: 3707
  • 55 Behenna DC, Liu Y, Yurino T, Kim J, White DE, Virgil SC, Stoltz BM. Nat. Chem. 2012; 4: 130
  • 56 Numajiri Y, Jiménez-Osés G, Wang B, Houk KN, Stoltz BM. Org. Lett. 2015; 17: 1082
  • 57 Alexy EJ, Virgil SC, Bartberger MD, Stoltz BM. Org. Lett. 2017; 19: 5007
  • 58 Hartwig JF, Stanley L. Copper-Catalyzed Allylic Substitution . In Organotransition Metal Chemistry: From Bonding to Catalysis . Hartwig JF. University Science Books; Mill Valley: 2010: 999-1008
  • 59 Trost BM, Dogra K. J. Am. Chem. Soc. 2002; 124: 7256
  • 61 Trost BM, Dogra K, Franzini M. J. Am. Chem. Soc. 2004; 126: 1944
  • 62 Trost BM, Miller JR, Hoffman CM. Jr. J. Am. Chem. Soc. 2011; 133: 8165
  • 63 Kanayama T, Yoshida D, Miyabe H, Takemoto K. Angew. Chem. Int. Ed. 2003; 42: 2054
  • 64 Hethcox JC, Shockley SE, Stoltz BM. ACS Catal. 2016; 6: 6207
  • 65 Krautwald S, Sarlah D, Schafroth MA, Carreira EM. Science (Washington, D. C.) 2013; 340: 1065
  • 66 Shockley SE, Hethcox JC, Stoltz BM. Angew. Chem. Int. Ed. 2017; 56: 11545
  • 67 Evans PA, Oliver S, Chae J. J. Am. Chem. Soc. 2012; 134: 19314
  • 68 Evans PA, Oliver S. Org. Lett. 2013; 15: 5626
  • 69 Turnbull BW. H, Oliver S, Evans PA. J. Am. Chem. Soc. 2015; 137: 15374
  • 70 Turnbull BW. H, Evans PA. J. Am. Chem. Soc. 2015; 137: 6156
  • 71 Wright TB, Evans PA. J. Am. Chem. Soc. 2016; 138: 15303