Synthesis 2019; 51(15): 3001-3013
DOI: 10.1055/s-0037-1611518
paper
© Georg Thieme Verlag Stuttgart · New York

Direct Synthesis of Deuterium-Labeled O-, S-, N-Vinyl Derivatives from Calcium Carbide

Maria S. Ledovskaya
a   Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof 198504, Russian Federation
,
Vladimir V. Voronin
a   Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof 198504, Russian Federation
,
Konstantin S. Rodygin
a   Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof 198504, Russian Federation
b   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russian Federation   Email: val@ioc.ac.ru
,
Alexandra V. Posvyatenko
b   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russian Federation   Email: val@ioc.ac.ru
c   Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, Moscow 119334, Russian Federation
d   Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russian Federation, Samory Mashela str., Moscow 117198, Russian Federation
,
Ksenia S. Egorova
b   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russian Federation   Email: val@ioc.ac.ru
,
a   Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof 198504, Russian Federation
b   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russian Federation   Email: val@ioc.ac.ru
› Author Affiliations
We gratefully acknowledge the support from the Russian Science Foundation (Project No. 18-13-00116).
Further Information

Publication History

Received: 18 March 2019

Accepted after revision: 22 March 2019

Publication Date:
30 April 2019 (online)


Abstract

A novel methodology for the preparation of trideuterovinyl derivatives of high purity directly from alcohols, thiols, and NH-compounds was developed. Commercially available calcium carbide and D2O acted as a D2-acetylene source, and DMSO-d 6 was used to complete the formation of the D2C=C(D)–X fragment (X = O, S, N). Polymerization of a selected trideuterovinylated compound showed a very promising potential of these substances in the synthesis of labeled polymeric materials. Biological activity of the synthesized trideuterovinyl derivatives was evaluated and the results indicated a significant increase of cytotoxicity upon deuteration.

Supporting Information

 
  • References

    • 1a El Tayar N, von de Waterbeemd H, Gryllaki M, Testa B, Trager WF. Int. J. Pharm. 1984; 19: 271
    • 1b Turowski M, Yamakawa N, Meller J, Kimata K, Ikegami T, Hosoya K, Tanaka N, Thornton ER. J. Am. Chem. Soc. 2003; 125: 13836
  • 2 Perrin CL, Dong Y. J. Am. Chem. Soc. 2007; 129: 4490
  • 3 Perrin CL, Ohta BK, Liberman J, Erdelyi M. J. Am. Chem. Soc. 2005; 127: 9641
    • 4a Elmore CS. In Annual Reports in Medicinal Chemistry, Vol. 44. Macor JE. Elsevier; Oxford: 2009: 515-534
    • 4b Kushner DJ, Baker A, Dunstall TG. Can. J. Physiol. Pharmacol. 1999; 77: 79
    • 4c Atzrodt J, Derdau V, Kerr WJ, Reid M. Angew. Chem. Int. Ed. 2018; 57: 3022
    • 5a Meanwell NA. J. Med. Chem. 2011; 54: 2529
    • 5b Kaur S, Gupta M. Glob. J. Pharmaceut. Sci. 2017; 1: MS.ID 555566
    • 5c Mutlib AE. Chem. Res. Toxicol. 2008; 21: 1672
    • 6a Harbeson SL, Tung RD. In Annual Reports in Medicinal Chemistry, Vol. 46. Macor JE. Elsevier; Oxford: 2011: 403-417
    • 6b Timmins GS. Expert Opin. Ther. Pat. 2014; 24: 1067
    • 7a Mullard A. Nat. Rev. Drug Discov. 2017; 17: 73
    • 7b Schmidt C. Nat. Biotechnol. 2017; 35: 493
    • 8a Tung RD. Future Med. Chem. 2016; 8: 491
    • 8b Jacques V, Czarnik AW, Judge TM, Van der Ploeg LH, DeWitt SH. Proc. Natl. Acad. Sci. U.S.A. 2015; 112: E1471
    • 8c Maltais F, Jung YC, Chen M, Tanoury J, Perni RB, Mani N, Laitinen L, Huang H, Liao S, Gao H, Krahn DF, Markwalder JA, Seitz SP, Robertson RT, Miwa GT. J. Med. Chem. 2009; 52: 7993
    • 8d Mutlib AE, Gerson RJ, Meunier PC, Haley PJ, Chen H, Gan LS, Davies MH, Gemzik B, Christ DD. Toxicol. Appl. Pharmacol. 2000; 169: 102
  • 9 Katsnelson A. Nat. Med. 2013; 19: 656
    • 10a Ledovskaya MS, Voronin VV, Rodygin KS. Russ. Chem. Rev. 2018; 87: 167
    • 10b Voronin VV, Ledovskaya MS, Bogachenkov AS, Rodygin RS, Ananikov VP. Molecules 2018; 23: 2442
    • 11a Hao L, Zhu K, Zhang S, Yu D. RSC Adv. 2016; 6: 90354
    • 11b Tran J, Pesenti T, Cressonnier J, Lefay C, Gigmes D, Guillaneuf Y, Nicolas J. Biomacromolecules 2019; 20: 305
    • 11c Tedeschi RJ. Acetylene-Based Chemicals from Coal and Other Natural Resources. Marcel Dekker; New York: 1982
    • 12a Bühler V. Polyvinylpyrrolidone Excipients for Pharmaceuticals. Springer; Berlin: 2005
    • 12b Zhao Y, Hu X, Li Z, Wang F, Xia Y, Hou S, Zhong H, Zhang F, Gu N. Sci. Rep. 2016; 6: 38669
    • 13a Maki Y, Mori H, Endo T. Macromolecules 2007; 40: 6119
    • 13b Brustolin F, Castelvetro V, Ciardelli F, Ruggeri G, Colligiani A. J. Polym. Sci., Part A: Polym. Chem. 2001; 39: 253
    • 13c Pötzsch R, Stahl BC, Komber H, Hawker CJ, Voit BI. Polym. Chem. 2014; 5: 2911
    • 14a Tedeschi RJ. In Encyclopedia of Physical Science and Technology, 3rd ed. Meyers RA. Academic Press; San Diego: 2001: 55
    • 14b Vitkovskaya NM, Larionova EY, Kobychev VB, Kaempf NV, Trofimov BA. Int. J. Quantum Chem. 2008; 108: 2630
    • 14c Matsuno H, Tsukamoto R, Oda Y, Tanaka K. Polymer 2017; 116: 479
    • 15a Littke AF, Fu GC. J. Am. Chem. Soc. 2001; 123: 6989
    • 15b Datta GK, von Schenck H, Hallberg A, Larhed M. J. Org. Chem. 2006; 71: 3896
    • 15c Gøgsig TM, Kleimark J, Lill SO. N, Korsager S, Lindhardt AT, Norrby P.-O, Skrydstrup T. J. Am. Chem. Soc. 2012; 134: 443
    • 15d Itami K, Mineno M, Muraoka N, Yoshida J. J. Am. Chem. Soc. 2004; 126: 11778
    • 16a Hartrampf FW. W, Trauner D. J. Org. Chem. 2017; 82: 8206
    • 16b Lv C, Tu Q, Gong J, Hao X, Yang Z. Tetrahedron 2017; 73: 3612
    • 16c Hanari T, Shimada N, Kurosaki Y, Thrimurtulu N, Nambu H, Anada M, Hashimoto S. Chem. Eur. J. 2015; 21: 11671
    • 16d Kusama H, Tazawa A, Ishida K, Iwasawa N. Chem. Asian J. 2016; 11: 64
    • 16e Nielsen TE, Le Quement S, Juhl M, Tanner D. Tetrahedron 2005; 61: 8013
    • 16f Jiménez-Moreno E, Guo Z, Oliveira BL, Albuquerque IS, Kitowski A, Guerreiro A, Boutureira O, Rodrigues T, Jiménez-Osés G, Bernardes GJ. L. Angew. Chem. Int. Ed. 2017; 56: 243
    • 16g Wu H, Alexander SC, Jin S, Devaraj NK. J. Am. Chem. Soc. 2016; 138: 11429
    • 17a Jung J.-C, Jung Y.-J, Park O.-S. Z. Naturforsch., B: J. Chem. Sci. 2008; 63: 293
    • 17b Becker J, Butt L, von Kiedrowski V, Mischler E, Quentin F, Hiersemann M. J. Org. Chem. 2014; 79: 3040
    • 17c Burns JM, Krenske EH, McGeary RP. Synthesis 2018; 50: 1750
    • 18a Louie J, Grubbs RH. Organometallics 2002; 21: 2153
    • 18b Jackson KL, Henderson JA, Motoyoshi H, Phillips AJ. Angew. Chem. Int. Ed. 2009; 48: 2346
    • 18c Nelson DJ, Manzini S, Urbina-Blanco CA, Nolan SP. Chem. Commun. 2014; 50: 10355
    • 18d Sturino CF, Wong JC. Y. Tetrahedron Lett. 1998; 24: 9623
    • 18e Boutureira O, Matheu MI, Díaza Y, Castillóna S. RSC Adv. 2014; 4: 19794
    • 18f Samojłowicz C, Grela K. ARKIVOC 2011; (iv): 71
    • 19a Hatano M, Ebe Y, Nishimura T, Yorimitsu H. J. Am. Chem. Soc. 2016; 138: 4010
    • 19b Li Q, Zhang H. Chem. Eur. J. 2015; 21: 16379
    • 19c Harmata M, Huang C, Rooshenas P, Schreiner P. Angew. Chem. Int. Ed. 2008; 47: 8696
    • 19d Braun M.-G, Zard SZ. Org. Lett. 2011; 13: 776
    • 19e Pulacchini S, Watkinson M. Tetrahedron Lett. 1999; 40: 9363
  • 20 Patel M, Saunthwal RK, Verma AK. ACS Omega 2018; 3: 10612
    • 21a Park K, Matsuda T, Yamada T, Monguchi Y, Sawama Y, Doi N, Sasai Y, Kondo S.-i, Sawama Y, Sajiki H. Adv. Synth. Catal. 2018; 360: 2303
    • 21b Zhou J, Hartwig JF. Angew. Chem. Int. Ed. 2008; 47: 5783
    • 21c Tse SK. S, Xue P, Lin Z, Jia G. Adv. Synth. Catal. 2010; 352: 1512
    • 21d Hatano M, Nishimura T, Yorimitsu H. Org. Lett. 2016; 18: 3674
    • 21e Erdogan G, Grotjahn DB. J. Am. Chem. Soc. 2009; 131: 10354
  • 22 Yabe Y, Sawama Y, Monguchi Y, Sajiki H. Chem. Eur. J. 2013; 19: 484
    • 23a Kwant BH. J. Labelled Compd. Radiopharm. 1980; 17: 841
    • 23b Sirokán G, Molnár Á, Bartók M. J. Labelled Compd. Radiopharm. 1989; 27: 439
    • 24a Gordillo Á, Forigua J, López-Mardomingo C, de Jesús E. Organometallics 2011; 30: 352
    • 24b Herwig P, Zawatzky K, Grieser M, Heber O, Jordon-Thaden B, Krantz C, Novotný O, Repnow R, Schurig V, Schwalm D, Vager Z, Wolf A, Trapp O, Kreckel H. Science 2013; 342: 1084
    • 24c Kawase T, Okada T, Enomoto T, Kikuchi T, Miyake Y, Oda M. Bull. Chem. Soc. Jpn. 2003; 76: 1793
  • 25 Reitz AB, Maryanoff BE. Synth. Commun. 1983; 13: 845
  • 26 Hodgson DM, Persaud RS. D. Beilstein J. Org. Chem. 2012; 8: 1896
  • 27 Bravo JA, Vila JL. Rev. Boliv. Quím. 2015; 32: 82
    • 28a Werner G, Rodygin KS, Kostin AA, Gordeev EG, Kashin AS, Ananikov VP. Green Chem. 2017; 19: 3032
    • 28b Rodygin KS, Ananikov VP. Green Chem. 2016; 18: 482
    • 28c Rodygin KS, Vikenteva YA, Ananikov VP. ChemSusChem 2019; 12: 1483
    • 28d Rodygin KS, Gyrdymova YV, Zarubaev VV. Mendeleev Commun. 2017; 27: 476
    • 28e Rodygin KS, Werner I, Ananikov VP. ChemSusChem 2018; 10: 292
    • 28f Rodygin KS, Werner G, Kucherov FA, Ananikov VP. Chem. Asian J. 2016; 11: 965
    • 29a Voronin VV, Ledovskaya MS, Gordeev EG, Rodygin KS, Ananikov VP. J. Org. Chem. 2018; 83: 3819
    • 29b Ledovskaya MS, Rodygin KS, Ananikov VP. Org. Chem. Front. 2018; 5: 226
  • 30 Bew SP, Hiatt-Gipson GD, Lovell JA, Poullain C. Org. Lett. 2012; 14: 456
  • 31 Russell RA, Garvey CJ, Darwish TA, Foster LJ. R, Holden PJ. In Methods in Enzymology, Vol. 565. Elsevier; Oxford: 2015. Chap. 5, 97-117
  • 32 Kresge AJ, Weeks DP. J. Am. Chem. Soc. 1984; 106: 7140
    • 33a Lee RD, An SM, Kim SS, Rhee GS, Kwack SJ, Seok JH, Chae SY, Park CH, Choi YW, Kim HS, Cho HY, Lee BM, Park KL. J. Toxicol. Environ. Health, Part A 2005; 68: 2147
    • 33b Uemura T, Tanaka Y, Higashi K, Miyamori D, Takasaka T, Nagano T, Toida T, Yoshimoto K, Igarashi K, Ikegaya H. Toxicology 2013; 310: 1
    • 33c Elamin E, Masclee A, Troost F, Dekker J, Jonkers D. Am. J. Physiol. Gastrointest. Liver Physiol. 2014; 307: G286
    • 34a Nelson SD, Garland WA, Mitchell JR, Vaishnav Y, Statham CN, Buckpitt AR. Drug Metab. Dispos. 1978; 6: 363
    • 34b Pohl LR, Gillette JR. Drug Metab. Rev. 1984; 15: 1335
    • 34c Sharma R, Strelevitz TJ, Gao H, Clark AJ, Schildknegt K, Obach RS, Ripp SL, Spracklin DK, Tremaine LM, Vaz AD. N. Drug Metab. Dispos. 2012; 40: 625
    • 35a Egorova KS, Seitkalieva MM, Posvyatenko AV, Ananikov VP. Toxicol. Res. 2015; 4: 152
    • 35b Kucherov FA, Egorova KS, Posvyatenko AV, Eremin DB, Ananikov VP. Anal. Chem. 2017; 89: 13374