Subscribe to RSS
DOI: 10.1055/s-0037-1611633
Visible-Light-Induced Decarboxylative C–H Adamantylation of Azoles at Ambient Temperature
Publication History
Received: 24 November 2018
Accepted: 27 November 2018
Publication Date:
19 December 2018 (online)
§ These authors contributed equally to this work
Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue
Abstract
The visible-light-promoted oxidant-free decarboxylative C–H adamantylation of azoles was accomplished under ambient reaction conditions. The novel acridinium photocatalyst and cobalt synergistic catalysis enabled the C–H adamantylation under oxidant-free reaction conditions. This C–H adamantylation strategy proved viable for a wide range of substituted azoles, including benzothiazole, benzoxazole, and benzimidazoles as well as caffeine derivatives, providing an expedient access to 2-adamantyl-substituted azoles.
Key words
photocatalysis - C–H functionalization - decarboxylation - cobalt - acridinium salts - oxidant-free - adamantylation - azolesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611633.
- Supporting Information
-
References
- 1a Kahl P, Wagner JP, Balestrieri C, Becker J, Hausmann H, Bodwell GJ, Schreiner PR. Angew. Chem. Int. Ed. 2016; 55: 9277
- 1b Wanka L, Iqbal K, Schreiner PR. Chem. Rev. 2013; 113: 3516
- 1c Schwertfeger H, Fokin AA, Schreiner PR. Angew. Chem. Int. Ed. 2008; 47: 1022
- 1d Hrdina R. Synthesis 2018; 50: in press ; DOI: 10.1055/s-0037-1610321
- 1e Fort RC, von R Schleyer P. Chem. Rev. 1964; 64: 277
- 2a Luo W, Tweedie D, Beedie SL, Vargesson N, Figg WD, Greig NH, Scerba MT. Bioorg. Med. Chem. 2018; 26: 1547
- 2b Ghosh AK, Osswald HL, Glauninger K, Agniswamy J, Wang Y.-F, Hayashi H, Aoki M, Weber IT, Mitsuya H. J. Med. Chem. 2016; 59: 6826
- 2c Balzarini J, Orzeszko-Krzesińska B, Maurin JK, Orzeszko A. Eur. J. Med. Chem. 2009; 44: 303
- 2d Yu Z, Sawkar AR, Whalen LJ, Wong C.-H, Kelly JW. J. Med. Chem. 2007; 50: 94
- 2e Stern E, Muccioli GG, Bosier B, Hamtiaux L, Millet R, Poupaert JH, Hénichart J.-P, Depreux P, Goossens J.-F, Lambert DM. J. Med. Chem. 2007; 50: 5471
- 2f Farhana L, Dawson MI, Leid M, Wang L, Moore DD, Liu G, Xia Z, Fontana JA. Cancer Res. 2007; 67: 318
- 2g Raun K, von Voss P, Gotfredsen CF, Golozoubova V, Rolin B, Knudsen LB. Diabetes 2006; 56: 8
- 2h Motornaya AE, Alimbarova LM, Shokova ÉA, Kovalev VV. Pharm. Chem. J. 2006; 40: 68
- 2i Long J, Manchandia T, Ban K, Gao S, Miller C, Chandra J. Cancer Chemother. Pharmacol. 2006; 59: 527
- 2j Jensen LS, Bølcho U, Egebjerg J, Strømgaard K. ChemMedChem 2006; 1: 419
- 2k Farhana L, Dawson MI, Fontana JA. Cancer Res. 2005; 65. 4909
- 2l Villhauer EB, Brinkman JA, Naderi GB, Burkey BF, Dunning BE, Prasad K, Mangold BL, Russell ME, Hughes TE. J. Med. Chem. 2003; 46: 2774
- 3 Liu J, Obando D, Liao V, Lifa T, Codd R. Eur. J. Med. Chem. 2011; 46: 1949
- 4a Moers C, Wrazidlo R, Natalello A, Netz I, Mondeshki M, Frey H. Macromol. Rapid Commun. 2014; 35: 1075
- 4b Chen Y, Spiering AJ. H, Karthikeyan S, Peters GW. M, Meijer EW, Sijbesma RP. Nat. Chem. 2012; 4: 559
- 4c Jensen JJ, Grimsley M, Mathias LJ. J. Polym. Sci., Part A: Polym. Chem. 1996; 34: 397
- 4d Matsumoto A, Tanaka S, Otsu T. Macromolecules 1991; 24: 4017
- 5a Wada Y, Kubo S, Kaji H. Adv. Mater. 2018; 30: 1705641
- 5b Rosemann NW, Locke H, Schreiner PR, Chatterjee S. Adv. Optical Mater. 2018; 6: 1701162
- 5c Kovalenko A, Yumusak C, Heinrichova P, Stritesky S, Fekete L, Vala M, Weiter M, Sariciftci NS, Krajcovic J. J. Mater. Chem. C 2017; 5: 4716
- 6a Gunawan MA, Moncea O, Poinsot D, Keskes M, Domenichini B, Heintz O, Chassagnon R, Herbst F, Carlson RM. K, Dahl JE. P, Fokin AA, Schreiner PR, Hierso J.-C. Adv. Funct. Mater. 2018; 28: 1705786
- 6b Rander T, Bischoff T, Knecht A, Wolter D, Richter R, Merli A, Möller T. J. Am. Chem. Soc. 2017; 139: 11132
- 6c Wagner JP, Schreiner PR. Angew. Chem. Int. Ed. 2015; 54: 12274
- 6d Ackermann L. Org. Lett. 2005; 7: 3123
- 7a Löffler S, Lübben J, Wuttke A, Mata RA, John M, Dittrich B, Clever GH. Chem. Sci. 2016; 7: 4676
- 7b Vícha R, Rouchal M, Kozubková Z, Kuřitka I, Marek R, Branná P, Čmelík R. Supramol. Chem. 2011; 23: 663
- 7c Liu H, Zhang Y, Hu J, Li C, Liu S. Macromol. Chem. Phys. 2009; 210: 2125
- 7d Kretschmann O, Steffens C, Ritter H. Angew. Chem. Int. Ed. 2007; 46: 2708
- 8a Larrosa M, Zonker B, Volkmann J, Wech F, Logemann C, Hausmann H, Hrdina R. Chem. Eur. J. 2018; 24: 6269
- 8b Hrdina R, Larrosa M, Logemann C. J. Org. Chem. 2017; 82: 4891
- 8c Larrosa M, Heiles S, Becker J, Spengler B, Hrdina R. Adv. Synth. Catal. 2016; 358: 2163
- 8d Chen L, Ren P, Carrow BP. J. Am. Chem. Soc. 2016; 138: 6392
- 8e Shadrikova VA, Golovin EV, Klimochkin YN. Chem. Heterocycl. Compd. 2015; 50: 1586
- 8f Hrdina R, Metz FM, Larrosa M, Berndt J.-P, Zhygadlo YY, Becker S, Becker J. Eur. J. Org. Chem. 2015; 6231
- 8g Sämann C, Dhayalan V, Schreiner PR, Knochel P. Org. Lett. 2014; 16: 2418
- 8h Liu M, Chen Y, Fu N. Synth. Commun. 2013; 43: 1055
- 8i Punji B, Emge TJ, Goldman AS. Organometallics 2010; 29: 2702
- 8j Mella M, Freccero M, Soldi T, Fasani E, Albini A. J. Org. Chem. 1996; 61: 1413
- 9a Raenko GF, Korotkikh NI, Pekhtereva TM, Shvaika OP. Russ. J. Org. Chem. 2001; 37: 1153
- 9b Cabildo P, Claramunt RM, Forfar I, Elguero J. Tetrahedron Lett. 1994; 35: 183
- 10a Fu Y, Shang R, Wang G.-Z. Synthesis 2018; 50: 2908
- 10b Zhou W.-J, Cao G.-M, Shen G, Zhu X.-Y, Gui Y.-Y, Ye J.-H, Sun L, Liao L.-L, Li J, Yu D.-G. Angew. Chem. Int. Ed. 2017; 56: 15683
- 10c Wu X, See JW. T, Xu K, Hirao H, Roger J, Hierso J.-C, Zhou JS. Angew. Chem. Int. Ed. 2014; 53: 13573
- 11a Ghorai D, Finger LH, Zanoni G, Ackermann L. ACS Catal. 2018; 8: 11657
- 11b Gandeepan P, Ackermann L. Chem 2018; 4: 199
- 11c Zell D, Bursch M, Müller V, Grimme S, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 10378
- 11d Liu W, Cera G, Oliveira JC. A, Shen Z, Ackermann L. Chem. Eur. J. 2017; 23: 11524
- 11e Moselage M, Li J, Kramm F, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 5341
- 11f Li J, Korvorapun K, De Sarkar S, Rogge T, Burns DJ, Warratz S, Ackermann L. Nat. Commun. 2017; 8: 15430
- 11g Song W, Lackner S, Ackermann L. Angew. Chem. Int. Ed. 2014; 53: 2477
- 11h Ackermann L. J. Org. Chem. 2014; 79: 8948
- 11i Hofmann N, Ackermann L. J. Am. Chem. Soc. 2013; 135: 5877
- 11j Ackermann L. Chem. Commun. 2010; 46: 4866
- 11k Ackermann L, Novák P, Vicente R, Hofmann N. Angew. Chem. Int. Ed. 2009; 48: 6045
- 12a Liang Y.-F, Steinbock R, Yang L, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 10625
- 12b Gandeepan P, Mo J, Ackermann L. Chem. Commun. 2017; 53: 5906
- 12c Yang F, Koeller J, Ackermann L. Angew. Chem. Int. Ed. 2016; 55: 4759
- 13a Strieth-Kalthoff F, James MJ, Teders M, Pitzer L, Glorius F. Chem. Soc. Rev. 2018; 47: 7190
- 13b Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
- 13c Matsui JK, Lang SB, Heitz DR, Molander GA. ACS Catal. 2017; 7: 2563
- 13d Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
- 13e Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 13f Miller DC, Tarantino KT, Knowles RR. Top. Curr. Chem. 2016; 374: 30
- 13g Kärkäs MD, Porco JA, Stephenson CR. J. Chem. Rev. 2016; 116: 9683
- 13h Fagnoni M, Dondi D, Ravelli D, Albini A. Chem. Rev. 2007; 107: 2725
- 14a Schwarz J, König B. Green Chem. 2018; 20: 323
- 14b Kumar NY. P, Rogge T, Yetra SR, Bechtoldt A, Clot E, Ackermann L. Chem. Eur. J. 2017; 23: 17449
- 14c Wei Y, Hu P, Zhang M, Su W. Chem. Rev. 2017; 117: 8864
- 14d Kumar NY. P, Bechtoldt A, Raghuvanshi K, Ackermann L. Angew. Chem. Int. Ed. 2016; 55: 6929
- 15a Wang J, Li G.-X, He G, Chen G. Asian J. Org. Chem. 2018; 7: 1307
- 15b Sun AC, McClain EJ, Beatty JW, Stephenson CR. J. Org. Lett. 2018; 20: 3487
- 15c Ren L, Cong H. Org. Lett. 2018; 20: 3225
- 15d Proctor RS. J, Davis HJ, Phipps RJ. Science 2018; 360: 419
- 15e McAtee RC, Beatty JW, McAtee CC, Stephenson CR. J. Org. Lett. 2018; 20: 3491
- 15f Liu X, Liu Y, Chai G, Qiao B, Zhao X, Jiang Z. Org. Lett. 2018; 20: 6298
- 15g Guo J, Wu Q.-L, Xie Y, Weng J, Lu G. J. Org. Chem. 2018; 83: 12559
- 15h Genovino J, Lian Y, Zhang Y, Hope TO, Juneau A, Gagné Y, Ingle G, Frenette M. Org. Lett. 2018; 20: 3229
- 15i Kammer LM, Rahman A, Opatz T. Molecules 2018; 23: 764
- 15j Sakamoto R, Kashiwagi H, Maruoka K. Org. Lett. 2017; 19: 5126
- 15k Jin Y, Fu H. Asian J. Org. Chem. 2017; 6: 368
- 15l Garza-Sanchez RA, Tlahuext-Aca A, Tavakoli G, Glorius F. ACS Catal. 2017; 7: 4057
- 15m Huang H, Jia K, Chen Y. ACS Catal. 2016; 6: 4983
- 15n Xuan J, Zhang Z.-G, Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 15632
- 15o Cheng W.-M, Shang R, Fu Y. ACS Catal. 2016; 7: 907
- 15p Lackner GL, Quasdorf KW, Overman LE. J. Am. Chem. Soc. 2013; 135: 15342
- 16a Yi H, Niu L, Song C, Li Y, Dou B, Singh AK, Lei A. Angew. Chem. Int. Ed. 2017; 56: 1120
- 16b Yang Q, Zhang L, Ye C, Luo S, Wu L.-Z, Tung C.-H. Angew. Chem. Int. Ed. 2017; 56: 3694
- 16c Niu L, Yi H, Wang S, Liu T, Liu J, Lei A. Nat. Commun. 2017; 8: 14226
- 16d He K.-H, Tan F.-F, Zhou C.-Z, Zhou G.-J, Yang X.-L, Li Y. Angew. Chem. Int. Ed. 2017; 56: 3080
- 16e Zheng Y.-W, Chen B, Ye P, Feng K, Wang W, Meng Q.-Y, Wu L.-Z, Tung C.-H. J. Am. Chem. Soc. 2016; 138: 10080
- 16f Xiang M, Meng Q.-Y, Li J.-X, Zheng Y.-W, Ye C, Li Z.-J, Chen B, Tung C.-H, Wu L.-Z. Chem. Eur. J. 2015; 21: 18080
- 17 Yu M, Wang B, Zhou P, Jia X, Yuan Y. ChemistrySelect 2016; 1: 6217
- 18 Yu D, Lu L, Shen Q. Org. Lett. 2013; 15: 940
- 19 Bolaño T, Esteruelas MA, Fernández I, Oñate E, Palacios A, Tsai J.-Y, Xia C. Organometallics 2015; 34: 778
- 20 Hou S, Yang H, Cheng B, Zhai H, Li Y. Chem. Commun. 2017; 53: 6926
- 21 Galicia M, González FJ. J. Electrochem. Soc. 2002; 149: D46
- 22 Fiorentino M, Testaferri L, Tiecco M, Troisi L. J. Chem. Soc., Perkin Trans. 2 1977; 1679
- 23 McCallum T, Barriault L. Chem. Sci. 2016; 7: 4754