Synthesis 2019; 51(12): 2435-2454
DOI: 10.1055/s-0037-1611789
review
© Georg Thieme Verlag Stuttgart · New York

Nanogold(0)-Catalyzed Addition of Heteroelement σ Linkages to Functional Groups

a   Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece   eMail: stratakis@uoc.gr
,
b   Department of Chemistry, Aristotle University of Thessaloniki, University Campus 54124, Thessaloniki, Greece
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 30. Januar 2019

Accepted after revision: 13. März 2019

Publikationsdatum:
25. April 2019 (online)


Abstract

In recent years, supported Au nanoparticles and nanoporous Au materials have shown remarkable catalytic activity in the activation of σ heteroelement linkages such as, Si–H, Si–Si, B–B and B–Si, and their subsequent addition to functional groups, primarily π bonds. In this review article we discuss the reaction modes known to date, and attempt to discuss the mechanistic clues of these transformations which are rather unexpected in terms of conventional transition-metal catalysis concepts, given that the catalytic sites are metallic Au(0).

1 Introduction

2 Activation of Hydrosilanes

2.1 Reactions of Hydrosilanes with Alkynes

2.1.1 Hydrosilylation

2.1.2 Dehydrogenative Coupling

2.2 Reactions of Hydrosilanes with Allenes

2.3 Reactions of Hydrosilanes with Carbonyl Compounds and Imines

2.4 Reactions of Hydrosilanes with α-Diazo Carbonyl Compounds

2.5 Miscellaneous Transformations from the Nano Au-Catalyzed Activation­ of Hydrosilanes

3 Activation of Disilanes

3.1 Disilylation of Alkynes

3.2 Reactions of 1,1,2,2-Tetramethyldisilane with Alkynes

4 Activation of Diboranes

4.1 Diborylation of Alkenes

4.2 Diborylation of Alkynes

4.3 Diborylation of Allenes

4.4 Diborylation of Methylenecyclopropanes

5 Activation of Silylboranes

5.1 Silaboration of Alkynes

5.2 Silaboration of Allenes

5.3 Silaboration of Unactivated Epoxides and Oxetanes

5.4 Reactions of Silylboranes with Aromatic Carbonyl Compounds

6 Conclusions and Future Perspectives

 
  • References


    • Selected review articles:
    • 1a Sharma HK, Pannell KH. Chem. Rev. 1995; 95: 1351
    • 1b Beletskaya I, Moberg C. Chem. Rev. 1999; 99: 3435
    • 1c Zimmer R, Dinesh CU, Nandanan E, Khan FA. Chem. Rev. 2000; 100: 3067
    • 1d Suginome M, Ito Y. Chem. Rev. 2000; 100: 3221
    • 1e Beletskaya I, Moberg C. Chem. Rev. 2006; 106: 2320
    • 1f Oestreich M, Hartmann E, Mewald M. Chem. Rev. 2013; 113: 402
    • 1g Ansell MB, Navarro O, Spencer J. Coord. Chem. Rev. 2017; 336: 54
  • 2 Heinze K. Angew. Chem. Int. Ed. 2017; 56: 16126
  • 3 Selected review article: Joost M, Amgoune A, Bourissou D. Angew. Chem. Int. Ed. 2015; 54: 15022
    • 4a Gualco P, Ladeira S, Miqueu K, Amgoune A, Bourissou D. Angew. Chem. Int. Ed. 2011; 50: 8320
    • 4b Joost M, Gualco P, Mallet-Ladeira S, Amgoune A, Bourissou D. Angew. Chem. Int. Ed. 2013; 52: 7160
  • 5 Lassauque N, Gualco P, Mallet-Ladeira S, Miqueu K, Amgoune A, Bourissou D. J. Am. Chem. Soc. 2013; 135: 13827
  • 6 Joost M, Estevez L, Miqueu K, Amgoune A, Bourissou D. Angew. Chem. Int. Ed. 2015; 54: 5236
  • 7 Chahdoura F, Lassauque N, Bourissou D, Amgoune A. Org. Chem. Front. 2016; 3: 856
    • 8a Haruta M, Yamada N, Kobayashi T, Iijima S. J. Catal. 1989; 115: 301
    • 8b Min BK, Friend CM. Chem. Rev. 2007; 107: 2709
    • 9a Corma A, Garcia H. Chem. Soc. Rev. 2008; 37: 2096
    • 9b Della Pina C, Falletta E, Rossik M. Chem. Soc. Rev. 2012; 41: 350
    • 10a Stratakis M, Garcia H. Chem. Rev. 2012; 112: 4469
    • 10b Zhang Y, Cui X, Shi F, Deng Y. Chem. Rev. 2012; 112: 2467
    • 10c Pan M, Brush AJ, Pozun ZD, Ham HC, Yu W.-Y, Henkelman G, Hwang GS, Mullins CB. Chem. Soc. Rev. 2013; 42: 5002
    • 10d Mitsudome T, Kaneda K. Green Chem. 2013; 15: 2636
    • 10e Takale BS, Bao M, Yamamoto Y. Org. Biomol. Chem. 2014; 12: 2005
    • 10f Liu X, He L, Liu Y.-M, Cao Y. Acc. Chem. Res. 2014; 47: 793
    • 10g Takale BS, Bao M, Yamamoto Y, Almansour AI, Arumugam N, Kumar RS. Synlett 2015; 26: 2355
    • 11a Zhang X, Ding Y. Catal. Sci. Technol. 2013; 3: 2862
    • 11b Wittstock A, Baumer M. Acc. Chem. Res. 2014; 47: 731
  • 12 Concepcion P, Carrettin S, Corma A. Appl. Catal. A 2006; 307: 42
  • 13 Parmentier TE, Dawson SR, Malta G, Lu L, Davies TE, Kondrat SA, Freakley SJ, Kiely CJ, Hutchings GJ. ChemCatChem 2018; 10: 1853
    • 14a Kyriakou G, Beaumont SK, Humphrey SM, Antonetti C, Lambert RM. ChemCatChem 2010; 2: 1444
    • 14b Corma A, Juarez R, Boronat M, Sanchez F, Iglesias M, Garcia H. Chem. Commun. 2011; 47: 1446
  • 15 Stenlid JH, Brinck T. J. Am. Chem. Soc. 2017; 139: 11012
    • 16a Marciniec B, Maciejewski H, Pietraszuk C, Pawluc P. Hydrosilylation: A Comprehensive Review on Recent Advances, Advances in Silicon Science Series, Vol. 1. Marciniec B. Springer; Dordrecht: 2009
    • 16b Trost BM, Ball ZT. Synthesis 2005; 853
    • 16c Corey JY. Chem. Rev. 2016; 116: 11291
  • 17 Caporusso AM, Aronica LA, Schiavi E, Martra G, Vitulli G, Salvadori PJ. Organomet. Chem. 2005; 690: 1063
  • 18 Aronica LA, Schiavi E, Evangelisti C, Caporusso AM, Salvadori P, Vitulli G, Bertinetti L, Martra G. J. Catal. 2009; 266: 250
  • 19 Corma A, Gonzalez-Arellano C, Iglesias M, Sanchez F. Angew. Chem. Int. Ed. 2007; 46: 7820
  • 20 Shore G, Organ MG. Chem. Eur. J. 2008; 14: 9641
  • 21 Psyllaki A, Lykakis IN, Stratakis M. Tetrahedron 2012; 68: 8724
  • 22 Ishikawa Y, Yamamoto Y, Asao N. Catal. Sci. Technol. 2013; 3: 2902

    • Selected examples:
    • 23a Mitsudome T, Noujima A, Mizugaki T, Jitsukawa K, Kaneda K. Chem. Commun. 2009; 5302
    • 23b Mitsudome T, Yamamoto Y, Noujima A, Mizugaki T, Jitsukawa K, Kaneda K. Chem. Eur. J. 2013; 19: 14398
    • 23c Dhiman M, Chalke B, Polshettiwar V. J. Mater. Chem. A 2017; 5: 1935
  • 24 Chen Z, Zhang Q, Chen W, Dong J, Yao H, Zhang X, Tong X, Wang D, Peng Q, Chen C, He W, Li Y. Adv. Mater. 2018; 30: 1704720
  • 25 Miura H, Endo K, Ogawa R, Shishido T. ACS Catal. 2017; 7: 1543
  • 26 Yamaguchi K, Wang Y, Oishi T, Kuroda Y, Mizuno N. Angew. Chem. Int. Ed. 2013; 52: 5627
  • 27 Maity P, Takano S, Yamazoe S, Wakabayashi T, Tsukuda T. J. Am. Chem. Soc. 2013; 135: 9450
  • 28 Kavthe RD, Ishikawa Y, Kusuma I, Asao N. Chem. Eur. J. 2018; 24: 15777
  • 29 Lykakis IN, Psyllaki A, Stratakis M. J. Am. Chem. Soc. 2011; 133: 10426
  • 30 Denmark SE, Wang Z. Org. Lett. 2001; 3: 1073
  • 31 Kotzabasaki V, Lykakis IN, Gryparis C, Psyllaki A, Vasilikogiannaki E, Stratakis M. Organometallics 2013; 32: 665
  • 32 Tanaka M, Uchimaru Y, Lautenschlager H.-J. Organometallics 1991; 10: 16
  • 33 Saridakis I, Kidonakis M, Stratakis M. ChemCatChem 2018; 10: 980
  • 34 Tamao K, Miyake N, Kiso Y, Kumada M. J. Am. Chem. Soc. 1975; 97: 5603

    • For typical examples, see:
    • 35a Miller ZD, Dorel R, Montgomery J. Angew. Chem. Int. Ed. 2015; 54: 9088
    • 35b Tafazolian H, Schmidt JA. R. Chem. Commun. 2015; 51: 5943
  • 36 Kidonakis M, Stratakis M. Org. Lett. 2015; 17: 4538
  • 37 Ojima I, Li Z, Zhu J. In The Chemistry of Organic Silicon Compounds, Vol. 2. Rappoport Z, Apeloig Y. John Wiley & Sons; New York: 1998
  • 38 Ito H, Yajima T, Tateiwa J.-i, Hosomi A. Chem. Commun. 2000; 981
  • 39 Raffa P, Evangelisti C, Vitulli G, Salvadori P. Tetrahedron Lett. 2008; 49: 3221
  • 40 Vasilikogiannaki E, Titilas I, Gryparis C, Louka A, Lykakis IN, Stratakis M. Tetrahedron 2014; 70: 6106
  • 41 Pesti J, Larson GL. Org. Process Res. Dev. 2016; 20: 1164
  • 42 Chen Q, Tanaka S, Fujita T, Chen L, Minato T, Ishikawa Y, Chen M, Asao N, Yamamoto Y, Jin T. Chem. Commun. 2014; 50: 3344
  • 43 Takale BS, Wang S, Zhang X, Feng X, Yu X, Jin T, Bao M, Yamamoto Y. Chem. Commun. 2014; 50: 14401
    • 44a Takale BS, Tao SM, Yu XQ, Feng XJ, Jin T, Bao M, Yamamoto Y. Org. Lett. 2014; 16: 2558
    • 44b Takale BS, Tao S, Yu X, Feng X, Jin T, Bao M, Yamamoto Y. Tetrahedron 2015; 71: 7154
  • 45 Keipour H, Carreras V, Ollevier T. Org. Biomol. Chem. 2017; 15: 5441
  • 46 Oliver-Meseguer J, Boronat M, Vidal-Moya A, Concepcion P, Rivero-Crespo MA, Leyva-Perez A, Corma A. J. Am. Chem. Soc. 2018; 140: 3215
  • 47 Zeineddine A, Rekhroukh F, Carrizo ED. S, Mallet-Ladeira S, Miqueu K, Amgoune A, Bourissou D. Angew. Chem. Int. Ed. 2018; 57: 1306
  • 48 Kidonakis M, Stratakis M. Org. Lett. 2018; 20: 4086
  • 49 Li H, Guo H, Li Z, Wu C, Li J, Zhao C, Guo S, Ding Y, He W, Li Y. Chem. Sci. 2018; 9: 4808
  • 50 Mikami Y, Noujima A, Mitsudome T, Mizugaki T, Jitsukawa K, Kaneda K. Chem. Eur. J. 2011; 17: 1768
  • 51 Park S, Lee IS, Park J. Org. Biomol. Chem. 2013; 11: 395
    • 52a Yan M, Jin T, Chen Q, Ho HE, Fujita T, Chen L.-Y, Bao M, Chen M.-W, Asao N, Yamamoto Y. Org. Lett. 2013; 15: 1484
    • 52b Louka A, Gryparis C, Stratakis M. ARKIVOC 2015; (iii): 38
  • 53 Yan M, Jin T, Ishikawa Y, Minato T, Fujita T, Chen L.-Y, Bao M, Asao N, Chen M.-W, Yamamoto Y. J. Am. Chem. Soc. 2012; 134: 17536
    • 54a Horn KA. Chem. Rev. 1995; 95: 1317
    • 54b Suginome M, Ito Y. J. Chem. Soc., Dalton Trans. 1998; 1925
    • 54c Xiao P, Gao L, Song Z. Chem. Eur. J. 2019; 25: 2407
  • 55 Gryparis C, Stratakis M. Chem. Commun. 2012; 48: 10751
  • 56 Shirakawa E, Hironaka K, Otsuda H, Hayashi T. Chem. Commun. 2006; 3927
  • 57 Sawama Y, Masuda M, Yasukawa N, Nakatani R, Nishimura S, Shibata K, Yamada T, Monguchi Y, Suzuka H, Takagi Y, Sajiki H. J. Org. Chem. 2016; 81: 4190
  • 58 Gualco P, Ladeira S, Miqueu K, Amgoune A, Bourissou D. Organometallics 2012; 31: 6001
  • 59 Gryparis C, Kidonakis M, Stratakis M. Org. Lett. 2013; 15: 6038
  • 60 Titilas I, Kidonakis M, Gryparis C, Stratakis M. Organometallics 2015; 34: 1597
  • 61 Tibbelin J, Wallner A, Emanuelsson R, Heijkenskjold F, Rosenberg M, Yamazaki K, Nauroozi D, Karlsson L, Feifel R, Pettersson R, Baumgartner J, Ott S, Ottosson H. Chem. Sci. 2014; 5: 360
  • 62 Yoshida H. ACS Catal. 2016; 6: 1799
  • 63 Ramirez J, Sanau M, Fernandez E. Angew. Chem. Int. Ed. 2008; 47: 5194
  • 64 Baker RT, Nguyen P, Marder TB, Stephen AWestcott S. A. Angew. Chem., Int. Ed. Engl. 1995; 34: 1336
  • 65 Chen Q, Zhao J, Ishikawa Y, Asao N, Yamamoto Y, Jin T. Org. Lett. 2013; 15: 5766
  • 66 Grirrane A, Corma A, Garcia H. Chem. Eur. J. 2011; 17: 2467
  • 67 Kidonakis M, Stratakis M. Eur. J. Org. Chem. 2017; 4265
  • 68 Kidonakis M, Stratakis M. ACS Catal. 2018; 8: 1227
  • 69 Yang F.-Y, Cheng C.-H. J. Am. Chem. Soc. 2001; 123: 761
  • 70 Chen Q, Zhang X, Su S, Xu Z, Li N, Li Y, Zhou H, Bao M, Yamamoto Y, Jin T. ACS Catal. 2018; 8: 5901
  • 71 Nakamura I, Yamamoto Y. Adv. Synth. Catal. 2002; 344: 111
  • 72 Ohmura T, Oshima K, Taniguchi H, Suginome M. J. Am. Chem. Soc. 2010; 132: 12194
  • 73 Gryparis C, Stratakis M. Org. Lett. 2014; 16: 1430
  • 74 Chang K.-J, Rayabarapu DK, Yang F.-Y, Cheng C.-H. J. Am. Chem. Soc. 2005; 127: 126
  • 75 Raptis C, Garcia H, Stratakis M. Angew. Chem. Int. Ed. 2009; 48: 3133
  • 76 Metaxas I, Vasilikogiannaki E, Stratakis M. Nanomaterials 2017; 7: 440
  • 77 Vasilikogiannaki E, Louka A, Stratakis M. Organometallics 2016; 35: 3895
  • 78 For a typical example, see: Joannou MV, Moyer BS, Meek SJ. J. Am. Chem. Soc. 2015; 137: 6176
  • 79 Kleeberg C, Feldmann E, Hartmann E, Vyas DJ, Oestreich M. Chem. Eur. J. 2011; 17: 13538
  • 80 Kidonakis M, Mullaj A, Stratakis M. J. Org. Chem. 2018; 83: 15553
    • 81a Sankar M, Dimitratos N, Miedziak PJ, Wells PP, Kiely CJ, Hutchings GJ. Chem. Soc. Rev. 2012; 41: 8099
    • 81b Rai RK, Tyagi D, Gupta K, Singh SK. Catal. Sci. Technol. 2016; 6: 3341
    • 81c Zhang L, Xie Z, Gong J. Chem. Soc. Rev. 2016; 45: 3916