Synthesis 2021; 53(06): 1127-1136
DOI: 10.1055/s-0040-1707312
paper

Synthesis of Fused Pyrimido[1,6-a]indolones via Rhodium(III)-Catalyzed Cascade Annulations

a   Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India   eMail: rajireddy@iict.res.in
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
,
Srinivas Bodasu
a   Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India   eMail: rajireddy@iict.res.in
,
Kathe Mallesh
a   Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India   eMail: rajireddy@iict.res.in
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
,
Y. Lakshmi Prapurna
a   Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India   eMail: rajireddy@iict.res.in
› Institutsangaben
C.R.R. thanks the Science and Engineering Research Board (SERB), New Delhi, for funding the project (EMR/2016/006253). Y.L.P. thanks Department of Science and Technology (DST) for a financial grant under Women Scientists Scheme-A [WOS-A, Grant No. SR/WOS-A/CS-1034/2014 (G)]. S.B. and K.M. thank the Council of Scientific and Industrial Research (CSIR), New Delhi, for research fellowships.


This work is dedicated to Dr. J. S. Yadav on the occasion of his 70th birthday for his contributions to organic synthesis

Abstract

A novel method for the synthesis of fused pyrimido[1,6-a]-indolone derivatives by annulation of 2-alkynylaryl aldehydes/2-alkynyl­arylidene ketones with N-(pivaloyloxy)-1H-indole-1-carboxamide catalyzed by rhodium has been accomplished. The reaction proceeds through C–H activation based annulation with alkyne moiety followed by addition of nitrogen on to aldehyde/activated alkene to give the products in moderate to good yields. Highly fluorescent dipyrrinone analogues could be synthesized from the derived products.

Supporting Information



Publikationsverlauf

Eingereicht: 07. August 2020

Angenommen nach Revision: 04. September 2020

Artikel online veröffentlicht:
12. Oktober 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For reviews, see:
    • 1a Ishikura M, Abe T, Choshi T, Hibino S. Nat. Prod. Rep. 2015; 32: 1389
    • 1b Zi W, Zuo Z, Ma D. Acc. Chem. Res. 2015; 48: 702
    • 1c Singh AK, Raj V, Saha S. Eur. J. Med. Chem. 2017; 142: 244

      For selected references, see:
    • 2a Wang Z, Addepalli Y, He Y. Org. Lett. 2018; 20: 644
    • 2b Cai J, Wu B, Rong G, Zhang C, Qui L, Xu X. Org. Lett. 2018; 20: 2733
    • 2c Xie C-C, Tan R, Liu Y-K. Org. Chem. Front. 2019; 6: 919
    • 3a Hammer H, Winterfeldt E. Tetrahedron 1981; 37: 3609
    • 3b Kato M, Nishino S, Ito K, Yamakuni H, Takasugi H. Chem. Pharm. Bull. 1994; 42: 2556
    • 3c Kamata J, Okada T, Kotake Y, Niijima J, Nakamura K, Uenaka T, Yamaguchi A, Tsukara K, Nagasu T, Koyanagi N, Kitoh K, Yoshimatsu K, Yoshino H, Sugumi H. Chem. Pharm. Bull. 2004; 52: 1071
    • 4a Mizuta M, Seio K, Ohkubo A, Miyata K. J. Org. Chem. 2007; 72: 5046
    • 4b Mizuta M, Seio K, Ohkubo A, Sekine M. J. Phy. Chem. B 2009; 113: 9562
    • 4c Dell’Acqua M, Ronda L, Piano R, Pellegrino S, Clerici F, Rossi E, Mozzarelli A, Gelmi M, Abbiati G. J. Org. Chem. 2015; 80: 10939
    • 5a Zhang Y, Zheng J, Cui S. J. Org. Chem. 2014; 79: 6490
    • 5b Zhang L.-B, Zhu M.-H, Du W.-B, Ni S.-F, Wen L.-R, Li M. Chem. Commun. 2019; 55: 14383
    • 5c Wu Z.-J, Li y.-Q, Huang Z.-Z. Eur. J. Org. Chem. 2016; 5399
    • 5d Chen X, Hu X, Bai S, Deng Y, Jiang H, Zeng W. Org. Lett. 2016; 18: 192
    • 6a Facoetti D, Abbiati G, d’Avolio L, Ackermann L, Rossi E. Synlett 2009; 2273
    • 6b Zheng J, Zhang Y, Cui S. Org. Lett. 2014; 16: 3560
    • 6c Tao L, Shi M. Org. Lett. 2019; 21: 129
    • 6d Hussain M, Chen M, Yang S, Wang G.-W. Org. Lett. 2019; 21: 8568
    • 6e Zhang L.-B, Zhu M.-H, Ni S.-F, Wen L.-R, Li M. ACS Catal. 2019; 9: 1680
  • 7 Reddy CR, Yarlagadda S, Sridhar B, Reddy BV. S. Eur. J. Org. Chem. 2017; 5763

    • For selected references, see:
    • 8a Satoh T, Miura M. Chem. Eur. J. 2010; 16: 11212
    • 8b Hyster TK, Rovis T. J. Am. Chem. Soc. 2010; 132: 10565
    • 8c Pham MV, Ye B, Cramer N. Angew. Chem. Int. Ed. 2012; 51: 10610
    • 8d Chuang S.-C, Gandeepan P, Cheng C.-H. Org. Lett. 2013; 15: 5750
    • 8e Collins KD, Lied F, Glorius F. Chem. Commun. 2014; 50: 4459
    • 8f Feng C, Feng D, Loh T-P. Chem. Commun. 2014; 50: 9865
    • 8g Zhang X, Si W, Bao M, Asao N, Yamamoto Y, Jin T. Org. Lett. 2014; 16: 4830
    • 8h Reddy Chidipudi S, Burns DJ, Khan I, Lam HW. Angew. Chem. Int. Ed. 2015; 54: 13975
    • 8i Xu Y, Yang X, Zhou X, Kong L, Li X. Org. Lett. 2017; 19: 4307
    • 8j Upadhyay NS, Thorat VH, Sato R, Annamalai P, Chuang S.-C, Cheng C.-H. Green Chem. 2017; 19: 3219
    • 8k Li Y, Pi R, Ouyang X-H, Song R-J, Li J-H. Org. Lett. 2019; 21: 397
    • 9a Guimond N, Gouliaras C, Fagnou K. J. Am. Chem. Soc. 2010; 132: 6908
    • 9b Guimond N, Gorelsky SI, Fagnou K. J. Am. Chem. Soc. 2011; 133: 6449
    • 10a Wang H, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 7318
    • 10b Yu D-G, de Azambuja F, Gennsch T, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2014; 53: 9650
    • 10c Fukui Y, Liu P, Liu Q, He Z-T, Wu N-Y, Tian P, Lin G-Q. J. Am. Chem. Soc. 2014; 136: 15607
    • 10d Webb NJ, Marsden SP, Raw SA. Org. Lett. 2014; 16: 4718
    • 10e Semakul N, Jackson KE, Paton RS, Rovis T. Chem. Sci. 2017; 8: 1015
    • 10f Hong SY, Jeong J, Chang S. Angew. Chem. Int. Ed. 2017; 56: 2408
    • 11a Reddy CR, Mallesh K. Org. Lett. 2018; 20: 150
    • 11b Reddy CR, Mallesh K, Srinivas B, Reddy DR. J. Org. Chem. 2020; 85: 7905
    • 12a Reddy C, Kajare RC, Punna N. Chem. Commun. 2020; 56: 3445
    • 12b Reddy CR, Sathish P, Valleti RR. ChemistrySelect 2019; 4: 8229

      For selected references, see:
    • 13a Brower JO, Lightner DA. J. Org. Chem. 2002; 67: 2713
    • 13b Boiadjiev SE, Lightner DA. Tetrahedron: Asymmetry 2004; 15: 3301
    • 13c Woydziak ZR, Boiadjiev SE, Norona WS, McDonagh AF, Lightner DA. J. Org. Chem. 2005; 70: 8417
    • 14a Kaiser RP, Hessler F, Mosinger J, Cisarova I, Kotora M. Chem. Eur. J. 2015; 21: 13577
    • 14b Hashmi AS. K, Buhrle M, Salathe R, Bats JW. Adv. Synth. Catal. 2008; 350: 2059
    • 14c Hamze A, Provot O, Alami M, Brion J-D. Org. Lett. 2005; 7: 5625
    • 14d Mora-Radó H, Bialy L, Czechtizky W, Méndez M, Harrity JP. A. Angew. Chem. Int. Ed. 2016; 55: 5834
    • 14e Buksnaitiene R, Urbanaite A, Cikotiene I. J. Org. Chem. 2014; 79: 6532
    • 15a Nishida M, Shintani R. Chem. Eur. J. 2019; 25: 7475
    • 15b Zhou F, Han X, Lu X. J. Org. Chem. 2011; 76: 1491
    • 15c Ji K, Zheng Z, Wang Z, Zhang L. Angew. Chem. Int. Ed. 2015; 54: 1245
    • 15d Wu X, Li M-L, Chen D-F, Chen S-S. J. Org. Chem. 2014; 79: 4743
    • 15e Huple DB, Ghorpade S, Liu R-S. Chem. Eur. J. 2013; 19: 12965
    • 15f Onishi Y, Iyoda M, Nakagawa M. Tetrahedron Lett. 1981; 22: 3641