Synthesis 2023; 55(11): 1616-1641
DOI: 10.1055/s-0040-1720035
review
Special Issue dedicated to Prof. Cristina Nevado, recipient of the 2021 Dr. Margaret Faul Women in Chemistry Award

SO2-Extrusive 1,4-(Het)Aryl Migration: Synthesis of α-Aryl Amides and Related Reactions

Nicolas G.-Simonian
,
,
Janine Cossy
N. G.-S. thanks the French Ministère de l’Enseignement Supérieur, de la Recherche et de l’Innovation (MESRI) for financial support.


Abstract

(Het)aryl migration has emerged as a key synthetic tool and has particularly been exploited for the synthesis of α-aryl amides. This method overcomes the existing α-arylation methods, which are not always compatible with the introduction of (het)aryl groups possessing bulky or electrophilic substituents. This review focuses on SO2-extrusive (het)aryl migration in the frame of α-aryl amide synthesis. Anion- and radical-mediated transformations are reported, including the synthesis of polycyclic compounds through cascade reactions.

1 Introduction

2 Anionic Aryl Migration

3 Radical Aryl Migration

4 Conclusion



Publication History

Received: 13 May 2022

Accepted after revision: 04 July 2022

Article published online:
24 August 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Fleming A. Br. J. Exp. Pathol. 1929; 10: 226
    • 1b Ligon BL. Semin. Pediatr. Infect. Dis. 2004; 15: 52
  • 2 Handsfield HH, Clark H, Wallace JF, Holmes KK, Turck M. Antimicrob. Agents Chemother. 1973; 3: 262
  • 3 Hart FD, Huskisson EC. Drugs 1984; 27: 232
    • 5a Shaughnessy KH, Hamann BC, Hartwig JF. J. Org. Chem. 1998; 63: 6546
    • 5b Culkin DA, Hartwig JF. Acc. Chem. Res. 2003; 36: 234
    • 5c Cossy J, de Filippis A, Gomez-Pardo D. Org. Lett. 2003; 5: 3037
    • 5d Johansson CC. C, Colacot TJ. Angew. Chem. Int. Ed. 2010; 49: 676
    • 5e Bellina F, Rossi R. Chem. Rev. 2010; 110: 1082
    • 5f Zheng B, Jia T, Walsh PJ. Org. Lett. 2013; 15: 4190
    • 5g Zheng B, Jia T, Walsh PJ. Adv. Synth. Catal. 2014; 356: 165

      See for example:
    • 6a Hama T, Liu X, Culkin DA, Hartwig JF. J. Am. Chem. Soc. 2003; 125: 11176
    • 6b Hama T, Liu X, Culkin DA, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 4976
    • 6c Cossy J, de Filippis A, Gomez-Pardo D. Org. Lett. 2003; 5: 3037
    • 6d Cossy J, de Filippis A, Gomez-Pardo D. Synlett 2003; 2171
    • 6e de Filippis A, Gomez-Pardo D, Cossy J. Synthesis 2004; 2930
    • 6f Hlavinka ML, Hagadorn JR. Organometallics 2007; 26: 4105
    • 6g Michon C, Béthegnies A, Capet F, Roussel P, de Filippis A, Gomez-Pardo D, Cossy J, Agbossou-Niedercorn F. Eur. J. Org. Chem. 2013; 4979
    • 7a Gooßen LJ. Chem. Commun. 2001; 669
    • 7b Duan Y.-Z, Deng M.-Z. Tetrahedron Lett. 2003; 44: 3423
    • 7c Fischer C, Fu GC. J. Am. Chem. Soc. 2005; 127: 4594
    • 7d Strotman NA, Sommer S, Fu GC. Angew. Chem. Int. Ed. 2007; 46: 3556
    • 7e Liu C, He C, Shi W, Chen M, Lei A. Org. Lett. 2007; 9: 5601
    • 7f Lundin PM, Fu GC. J. Am. Chem. Soc. 2010; 132: 11027
    • 7g Jin M, Nakamura M. Chem. Lett. 2011; 40: 1012
    • 7h Tarui A, Shinohara S, Sato K, Omote M, Ando A. Org. Lett. 2016; 18: 1128
    • 7i Barde E, Guérinot A, Cossy J. Org. Lett. 2017; 19: 6068
    • 7j Li J, Berger M, Zawodny W, Simaan M, Maulide N. Chem 2019; 5: 1883
    • 7k Koch V, Lorion MM, Barde E, Bräse S, Cossy J. Org. Lett. 2019; 21: 6241
    • 7l Lorion MM, Koch V, Nieger M, Chen H.-Y, Lei A, Bräse S, Cossy J. Chem. Eur. J. 2020; 26: 13163
  • 8 A cross-electrophile cross-coupling leading to imide arylation has also been described, see: Durandetti M, Périchon J, Nédelec J.-Y. J. Org. Chem. 1997; 62: 7914
    • 9a Loven R, Speckamp WN. Tetrahedron Lett. 1972; 13: 1567
    • 9b Köhler JJ, Speckamp WN. Tetrahedron Lett. 1977; 18: 631
    • 9c Köhler JJ, Speckamp WN. Tetrahedron Lett. 1977; 18: 635

      Seminal work on aryl migration:
    • 10a Henriques R. Ber. Deutsch. Chem. Ges. 1894; 27: 2993
    • 10b Hinsberg O. J. Prakt. Chem. 1914; 90: 345
    • 10c Hinsberg O. J. Prakt. Chem. 1915; 91: 307
    • 10d Wieland H. Chem. Ber. 1911; 44: 2550
    • 10e Warren LA, Smiles S. J. Chem. Soc. 1930; 1327
    • 10f Levy AA, Rains HC, Smiles S. J. Chem. Soc. 1931; 3264
    • 10g Evans WJ, Smiles S. J. Chem. Soc. 1935; 181
    • 10h Evans WJ, Smiles S. J. Chem. Soc. 1936; 329
    • 10i Urry WH, Kharasch MS. J. Am. Chem. Soc. 1944; 66: 1438

      Previous reviews on aryl migration:
    • 11a Studer A, Bossart M. Tetrahedron 2001; 57: 9649
    • 11b Snape TJ. Chem. Soc. Rev. 2008; 37: 2452
    • 11c Chen Z.-M, Zhang X.-M, Tu Y.-Q. Chem. Soc. Rev. 2015; 44: 5220
    • 11d Allart-Simon I, Gérard S, Sapi J. Molecules 2016; 21: 878
    • 11e Holden CM, Greaney MF. Chem. Eur. J. 2017; 23: 8992
    • 11f Henderson AR. P, Kosowan JR, Wood TE. Can. J. Chem. 2017; 95: 483
    • 11g Li W, Xu W, Xie J, Yu S, Zhu C. Chem. Soc. Rev. 2018; 47: 654
    • 11h Whalley DM, Greaney MF. Synthesis 2022; 54: 1908

    • Book chapters:
    • 11i Plesniak K, Zarecki A, Wicha J. In Sulfur-Mediated Rearrangements II . In Topics in Current Chemistry, Vol. 275. Schaumann E. Springer; Heidelberg: 2007: 163-250
    • 11j Li JJ. Name Reactions . Springer; Heidelberg: 2009: 511-514
    • 11k Kürti L, Czakó B. Strategic Applications of Named Reactions in Organic Synthesis. Elsevier; New York: 2005: 416-417
    • 12a In contrast, when some CO extrusive radical aryl migrations were attempted starting from acrylimides, a 1,6-addition of the radical on the aryl group was favored over the ipso addition.12b
    • 12b Li L, Deng M, Zheng S.-C, Xiong Y.-P, Tan B, Liu X.-Y. Org. Lett. 2014; 16: 504
  • 13 To gain in concision, the fragmentation and loss of SO2 are generally represented as a single step but the two processes are not concerted.
  • 14 Lennox AJ. J. Angew. Chem. Int. Ed. 2018; 57: 14686
    • 15a Bernasconi CF, Gehriger CL. J. Am. Chem. Soc. 1974; 96: 1092
    • 15b Sekiguchi S, Okada K. J. Org. Chem. 1975; 40: 2782
    • 15c Knipe AC, Lound-Keast J, Sridhar N. J. Chem. Soc., Chem. Commun. 1976; 765
    • 15d Okada K, Sekiguchi S. J. Org. Chem. 1978; 43: 441
    • 15e Knipe AC, Sridhar N, Lound-Keast J. Tetrahedron Lett. 1979; 20: 2541
    • 15f Knipe AC, Sridhar N. J. Chem. Soc., Chem. Commun. 1979; 791
  • 16 Yang D, Xie C.-X, Wu X.-T, Fei L.-R, Feng L, Ma C. J. Org. Chem. 2020; 85: 14905
  • 17 Kemnitz CR, Loewen MJ. J. Am. Chem. Soc. 2007; 129: 2521
  • 18 Elguero J, Goya P, Rozas I, Catalán J, De Paz JL. G. J. Mol. Struct.: THEOCHEM 1989; 184: 115
    • 19a Naito T, Dohmori R, Nagase O. Yakugaku Zasshi 1954; 74: 593
    • 19b Naito T, Dohmori R, Sano M. Yakugaku Zasshi 1954; 74: 596
    • 19c Naito T, Dohmori R, Shimoda M. Pharm. Bull. 1955; 3: 34
    • 19d Naito T, Dohmori R. Pharm. Bull. 1955; 3: 38
    • 19e Naito T, Dohmori R, Kotake T. Chem. Pharm. Bull. 1964; 12: 588
    • 19f Dohmori R. Chem. Pharm. Bull. 1964; 12: 591
    • 19g Dohmori R. Chem. Pharm. Bull. 1964; 12: 595
    • 19h Dohmori R. Chem. Pharm. Bull. 1964; 12: 601
  • 20 Barlow HL, Rabet PT. G, Durie A, Evans T, Greaney MF. Org. Lett. 2019; 21: 9033
  • 21 Fan J.-H, Yang J, Song R.-J, Li J.-H. Org. Lett. 2015; 17: 836
    • 22a Backer HJ, Moed HD. Recl. Trav. Chim. Pays-Bas 1947; 66: 689
    • 22b Backer HJ, Groot J. Recl. Trav. Chim. Pays-Bas 1950; 69: 1323
    • 23a Bordwell FG, Fried HE. J. Org. Chem. 1981; 46: 4327
    • 23b Bordwell FG, Fried HE. J. Org. Chem. 1991; 56: 4218
  • 24 This group had already worked on this kind of strategy with sulfonamide addition on a benzyne: Holden CM, Sohel SM. A, Greaney MF. Angew. Chem. Int. Ed. 2016; 55: 2450

    • See for example:
    • 25a Cao Y, Luo C, Yang P, Li P, Wu C. Med. Chem. Res. 2021; 30: 501
    • 25b Tandon N, Luxami V, Kant D, Tandon R, Paul K. RSC Adv. 2021; 11: 25228
    • 26a Leardini R, Nanni D, Pedulli GF, Tundo A, Zanardi G, Foresti E, Palmieri P. J. Am. Chem. Soc. 1989; 111: 7723
    • 26b Asensio A, Dannenberg JJ. J. Org. Chem. 2001; 66: 5996
  • 27 Khartabil H, Doudet L, Allart-Simon I, Ponce-Vargas M, Gérard S, Hénon E. Org. Biomol. Chem. 2020; 18: 6840
  • 28 Azzi E, Ghigo G, Parisotto S, Pellegrino F, Priola E, Renzi P, Deagostino A. J. Org. Chem. 2021; 86: 3300
  • 29 Kong W, Casimiro M, Merino E, Nevado C. J. Am. Chem. Soc. 2013; 135: 14480
  • 30 Authors did not write an equilibrium between the key intermediate and the spiro compound.
  • 31 Kong W, Casimiro M, Fuentes N, Merino E, Nevado C. Angew. Chem. Int. Ed. 2013; 52: 13086
  • 32 Zhang B, Mück-Lichtenfeld C, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2013; 52: 10792
    • 33a Meanwell NA. J. Med. Chem. 2011; 54: 2529
    • 33b Barillari C, Brown N. Bioisosteres in Medicinal Chemistry . Brown N. Wiley-VCH; Weinheim: 2012: pp 15-29
  • 34 He Z, Tan P, Ni C, Hu J. Org. Lett. 2015; 17: 1838
  • 35 Tang S, Yuan L, Deng Y.-L, Li Z.-Z, Wang L.-N, Huang G.-X, Sheng R.-L. Tetrahedron Lett. 2017; 58: 329
  • 36 Liu K, Sui L.-C, Jin Q, Li D.-Y, Liu P.-N. Org. Chem. Front. 2017; 4: 1606
  • 37 Zheng L, Yang C, Xu Z, Gao F, Xia W. J. Org. Chem. 2015; 80: 5730
  • 38 Liu C, Zhang B. RSC Adv. 2015; 5: 61199
  • 39 Biswas P, Guin J. J. Org. Chem. 2018; 83: 5629
  • 40 Chatgilialoglu C, Crich D, Komatsu M, Ryu I. Chem. Rev. 1999; 99: 1991
  • 41 Yu J.-T, Chen R, Zhu J, Cheng J. Org. Biomol. Chem. 2017; 15: 5476
  • 42 Xia X.-F, Zhu S.-L, Chen C, Wang H, Liang Y.-M. J. Org. Chem. 2016; 81: 1277
  • 43 Tan F.-L, Song R.-J, Hu M, Li J.-H. Org. Lett. 2016; 18: 3198
  • 44 Yu J.-T, Hu W, Peng H, Cheng J. Tetrahedron Lett. 2016; 57: 4109
  • 45 Zhang H, Pan C, Jin N, Gu Z, Hu H, Zhu C. Chem. Commun. 2015; 51: 1320
  • 46 Zhang M, Sheng W, Ji P, Liu Y, Guo C. RSC Adv. 2015; 5: 56438
  • 47 Li M, Wang C.-T, Bao Q.-F, Qiu Y.-F, Wei W.-X, Li X.-S, Wang Y.-Z, Zhang Z, Wang J.-L, Liang Y.-M. Org. Lett. 2021; 23: 751
  • 48 Ni Z, Huang X, Pan Y. Org. Lett. 2016; 18: 2612
  • 49 Caporaso R, Manna S, Zinken S, Kochnev AR, Lukyanenko ER, Kurkin AV, Antonchick AP. Chem. Commun. 2016; 52: 12486
  • 50 Kong W, Merino E, Nevado C. Angew. Chem. Int. Ed. 2014; 53: 5078
  • 51 Kong W, Fuentes N, García-Domínguez A, Merino E, Nevado C. Angew. Chem. Int. Ed. 2015; 54: 2487
  • 52 Wang J.-L, Liu M.-L, Zou J.-Y, Sun W.-H, Liu X.-Y. Org. Lett. 2022; 24: 309
    • 53a Shi L, Wang H, Yang H, Fu H. Synlett 2015; 26: 688
    • 53b Qiu J.-K, Hao W.-J, Kong L.-F, Ping W, Tu S.-J, Jiang B. Tetrahedron Lett. 2016; 57: 2414
  • 54 Hervieu C, Kirillova MS, Suárez T, Müller M, Merino E, Nevado C. Nat. Chem. 2021; 13: 327

    • For some studies highlighting the aromatization of N-substituted cyclohexadienyl derivatives through C–N fragmentation, see:
    • 55a Kemper J, Studer A. Angew. Chem. Int. Ed. 2005; 44: 4914
    • 55b Guin J, Mück-Lichtenfeld C, Grimme S, Studer A. J. Am. Chem. Soc. 2007; 129: 4498
    • 56a Niu B, Xie P, Zhao W, Zhou Y, Bian Z, Pittman CU. Jr, Zhou A. RSC Adv. 2014; 4: 43525
    • 56b Niu B, Xie P, Bian Z, Zhao W, Zhang M, Zhou Y, Feng L, Pittman CU. Jr, Zhou A. Synlett 2015; 26: 635
    • 56c Wang H, Sun S, Cheng J. Org. Lett. 2017; 19: 5844
  • 57 Fuentes N, Kong W, Fernández-Sánchez L, Merino E, Nevado C. J. Am. Chem. Soc. 2015; 137: 964

    • For similar cascade reactions, see:
    • 58a Su X, Huang H, Hong W, Cui J, Yu M, Li Y. Chem. Commun. 2017; 53: 13324
    • 58b Huang H, Li Y. J. Org. Chem. 2017; 82: 4449
  • 59 Hu M, Guo L.-Y, Han Y, Tan F.-L, Song R.-J, Li J.-H. Chem. Commun. 2017; 53: 6081
    • 60a Clark AJ, Coles SR, Collis A, Debure T, Guy C, Murphy NP, Wilson P. Tetrahedron Lett. 2009; 50: 5609
    • 60b Clark AJ, Coles SR, Collis A, Fullaway DR, Murphy NP, Wilson P. Tetrahedron Lett. 2009; 50: 6311
  • 61 Clark AJ, Cornia A, Felluga F, Gennaro A, Ghelfi F, Isse AA, Menziani MC, Muniz-Miranda F, Roncaglia F, Spinelli D. Eur. J. Org. Chem. 2014; 6734
  • 62 Konkolewicz D, Wang Y, Zhong M, Krys P, Isse AA, Gennaro A, Matyjaszewski K. Macromolecules 2013; 46: 8749
  • 63 Isse AA, Bortolamei N, De Paoli P, Gennaro A. Electrochim. Acta 2013; 110: 655
  • 64 Chuang C.-P, Chen Y.-Y, Chuang T.-H, Yang C.-H. Synthesis 2017; 49: 1273
  • 65 Kyne SH, Lefèvre G, Ollivier C, Petit M, Cladera V.-AR, Fensterbank L. Chem. Soc. Rev. 2020; 49: 8501
  • 66 Gillaizeau-Simonian N, Barde E, Guérinot A, Cossy J. Chem. Eur. J. 2021; 27: 4004
  • 67 The reactions were conducted at 100 °C in THF under pressure in sealed tubes.
    • 68a Zeitler K. Angew. Chem. Int. Ed. 2009; 48: 9785
    • 68b Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
    • 68c Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 68d Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 68e Tucker JW, Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
    • 68f Pagire SK, Föll T, Reiser O. Acc. Chem. Res. 2020; 53: 782
  • 69 Li Y, Hu B, Dong W, Xie X, Wan J, Zhang Z. J. Org. Chem. 2016; 81: 7036
    • 70a Flamigni L, Barbieri A, Sabatini C, Ventura B, Barigelletti F. In Photochemistry and Photophysics of Coordination Compounds II . In Topics in Current Chemistry, Vol. 281. Balzani V, Campagna S. Springer; Heidelberg: 2007: 143-203
    • 70b Nguyen JD, D’Amato EM, Narayanam JM. R, Stephenson CR. J. Nat. Chem. 2012; 4: 854
  • 71 Gao X, Li C, Yuan Y, Xie X, Zhang Z. Org. Biomol. Chem. 2020; 18: 263
  • 72 Radhoff N, Studer A. Angew. Chem. Int. Ed. 2021; 60: 3561
    • 73a Waldau E, Pütter R. Angew. Chem. Int. Ed. 1972; 11: 826
    • 73b Johnson S, Kovács E, Greaney MF. Chem. Commun. 2020; 56: 3222
    • 74a Bacqué E, El Qacemi M, Zard SZ. Org. Lett. 2005; 7: 3817
    • 74b Chen Y.-R, Duan W.-L. J. Am. Chem. Soc. 2013; 135: 16754
  • 75 The prevalence of this 1,6-addition over extrusive 1,4-aryl migration through ipso addition could be due to geometric factors, the N–C(O)–Ar angle for an imide should be of ca. 120° whereas the N–S(O)2–Ar angle for a sulfonimide should be of ca. 109°, according to VSEPR theory.