Synthesis 2022; 54(10): 2464-2472
DOI: 10.1055/s-0041-1737337
paper

Nickel-Catalyzed Regioselective Thiolation of Anilides with Thiols

Ebrahim Kianmehr
a   School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran
,
Fatemeh Doraghi
a   School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran
,
Alireza Foroumadi
b   Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 1417614411, Iran
› Author Affiliations
We gratefully acknowledge the financial support of the University of Tehran and the Iran National Science Foundation (INSF, no. 99002277).


Abstract

An efficient method for direct thiolation of anilides with thiols using NiCl2·6H2O as the catalyst is developed. Using this method, the desired products were successfully synthesized in moderate to good yields. Initial mechanistic studies suggest that this reaction proceeds through a radical pathway.

Supporting Information



Publication History

Received: 04 August 2021

Accepted after revision: 06 December 2021

Article published online:
16 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Comprehensive medicinal chemistry, the rational design, mechanistic study and therapeutic application of chemical compounds, Vol. 2. Hansch C, Sammes PG, Taylor JB. Pergamon Press; Oxford: 1990. Chap. 7.1, 212
    • 2b Mellah M, Voituriez A, Schulz E. Chem. Rev. 2007; 107: 5133
    • 2c Ali A, Wang J, Nathans RS, Cao H, Sharova N, Stevenson M, Rana TM. Chem. Med. Chem. 2012; 7: 1217
    • 2d García AM, Brea J, Morales-García JA, Perez DI, González A, Alonso-Gil S, Gracia-Rubio I, Ros-Simó C, Conde S, Cadavid MI, Loza MI, Perez-Castillo A, Valverde O, Martinez A, Gil C. J. Med. Chem. 2014; 57: 8590
    • 2e Salado IG, Redondo M, Bello ML, Perez C, Liachko NF, Kraemer BC, Miguel L, Lecourtois M, Gil C, Martinez A, Perez DI. J. Med. Chem. 2014; 57: 2755
    • 3a Lu Q, Zhang J, Wei FL, Qi Y, Wang H, Liu Z, Lei A. Angew. Chem. Int. Ed. 2013; 52: 7156
    • 3b Xi Y.-M, Dong B.-L, McClain EJ, Wang Q.-Y, Gregg TL, Akhmedov NG, Petersen JL, Shi X.-D. Angew. Chem. Int. Ed. 2014; 53: 4657
    • 3c Lu Q.-Q, Zhang J, Zhao G.-L, Qi Y, Wang H.-M, Lei A. J. Am. Chem. Soc. 2013; 135: 11481

      For reviews on C–S bond coupling, see:
    • 4a Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
    • 4b Lee C.-F, Liu Y.-C, Badsara SS. Chem. Asian J. 2014; 9: 706
    • 4c Shen C, Zhang P, Sun Q, Bai S, Hor TS. A, Liu X. Chem. Soc. Rev. 2015;  44: 291
    • 5a Lin C, Li D, Wang B, Yao J, Zhang Y. Org. Lett. 2015; 17: 1328
    • 5b Yan S-Y, Liu Y.-J, Liu B, Liu Y.-H, Zhang Z.-Z, Shi B.-F. Chem. Commun. 2015; 51: 7341
  • 6 Cao Y.-Q, Zhang Z, Guo Y.-X, Wu G.-Q. Syn. Commun. 2008; 38: 1325
  • 7 Wellala NP. N, Guan H. Org. Biomol. Chem. 2015; 13: 10802
  • 8 Jones KD, Power DJ, Bierer D, Gericke KM, Stewart SG. Org. Lett. 2018; 20: 208
  • 9 Lee S.-C, Liao H.-H, Chatupheeraphat A, Rueping M. Chem. Eur. J. 2018; 24: 3608
    • 10a Buchman R, Hamilton DN. J. Agric. Food Chem. 1981; 29: 1285
    • 10b Wiseman EH, Chiaini J, McManus JM. J. Med. Chem. 1973; 16: 131
    • 10c Youssef AF, Abou-Ouf AA, Kader MA. A. J. Med. Chem. 1971; 14: 443
    • 11a Boele MD. K, Strijdonck GP. F. V, Vries AH. M. D, Kamer PC. J, Vries JG. D, Leeuwen PW. N. M. V. J. Am. Chem. Soc. 2009; 124: 1586
    • 11b Kim BS, Jang C, Lee DJ, Youn SW. Chem. Asian J. 2010; 5: 2336
    • 11c Ackermann L, Wang L, Wolfram R, Lygin AV. Org. Lett. 2012; 14: 728
    • 11d Schmidt B, Elizarov N. Chem. Commun. 2012; 48: 4350
    • 11e Manikandan R, Jeganmohan M. Org. Lett. 2014; 16: 3568
    • 11f Takahama Y, Shibata Y, Tanaka K. Chem. Eur. J. 2015; 21: 9053
    • 11g Elumalai K, Leong WK. Tetrahedron Lett. 2018; 59: 113
    • 12a Buslov I, Hu X. Adv. Synth. Catal. 2014; 356: 3325
    • 12b Zhou L, Tang S, Qi X, Lin C, Liu K, Liu C, Lan Y, Lei A. Org. Lett. 2014; 16: 3404
    • 12c Simkó DC, Elekes P, Pázmándi V, Novák Z. Org. Lett. 2018; 20: 676
    • 13a Wang G.-W, Yuan T.-T. J. Org. Chem. 2010; 75: 476
    • 13b Jiang T.-S, Wang G.-W. J. Org. Chem. 2012; 77: 9504
    • 13c Chen F.-J, Zhao S, Hu F, Chen K, Zhang Q, Zhang S.-Q, Shi B.-F. Chem. Sci. 2013; 4: 4187
    • 13d Péron F, Fossey C, Santos JS. O, Cailly T, Fabis F. Chem. Eur. J. 2014; 20: 1
    • 13e Yun Y.-l, Yang J, Miao Y.-H, Sun J, Wang X.-j. J. Saudi Chem. Soc. 2020; 24: 151
    • 14a Yang S, Li B, Wan X, Shi Z. J. Am. Chem. Soc. 2007; 129: 6066
    • 14b Zhou H, Chung W.-J, Xu Y.-H, Loh T.-P. Chem. Commun. 2009; 3472
    • 14c Wang X, Leow D, Yu J.-Q. J. Am. Chem. Soc. 2011; 133: 13864
    • 14d Yang F, Song F, Li W, Lan J, You J. RSC Adv. 2013; 3: 9649
    • 14e Li D, Xu N, Zhang Y, Wang L. Chem. Commun. 2014; 50: 14862
    • 14f Chinnagolla RK, Jeganmohan M. Chem. Commun. 2014; 50: 2442
    • 14g Xu H, Shang M, Dai H.-X, Yu J.-Q. Org. Lett. 2015; 17: 3830
  • 15 Kianmehr E, Fardpour M, Nemati-Kharat A. Eur. J. Org. Chem. 2017; 3017
    • 16a Lu Y, Li Y, Zhang R, Jin K, Duan C. Tetrahedron 2013; 69: 9422
    • 16b Gao Y, Mao Y, Zhang B, Zhan Y, Huo Y. Org. Biomol. Chem. 2018; 16: 3881
    • 16c Kianmehr E, Bahrami-Nasab S. Eur. J. Org. Chem. 2018; 6447
    • 16d Düsel SJ. S, König B. J. Org. Chem. 2018; 83: 2802
    • 16e Dai E, Dong Y, Kong R, Liu G, Dong Y, Wu Q, Liang D, Ma Y. Synth. Commun. 2020; 50: 1687
    • 17a Wan X, Ma Z, Li B, Zhang K, Cao S, Zhang S, Shi Z. J. Am. Chem. Soc. 2006; 128: 7416
    • 17b Liang D, Li Y, Gao S, Li R, Li X, Wang B, Yang H. Green Chem. 2017; 19: 3344
    • 17c Tian C, Yao X, Ji W, Wang Q, An G, Li G. Eur. J. Org. Chem. 2018; 5972
    • 17d Kianmehr E, Afaridoun H. Synthesis 2021; 53: 1513
    • 18a Wu Y, Li B, Mao F, Li X, Kwong FY. Org. Lett. 2011; 13: 3258
    • 18b Yin Z, Sun P. J. Org. Chem. 2012; 77: 11339
    • 18c Santiago C, Sotomayor N, Lete E. Molecules 2020; 25: 3247
    • 18d Kianmehr E, Afaridoun H. New J. Chem. 2020; 44: 4319
    • 19a Ma W, Weng Z, Rogge T, Gu L, Lin J, Peng A, Luo X, Gou X, Ackermann L. Adv. Synth. Catal. 2018; 360: 704
    • 19b Rui X, Zhu Y, Dai R, Huang C, Wang C, Si D, Wang X, Zhang X, Wen H, Li W, Liu J. Asian J. Org. Chem. 2021; 10: 793
    • 19c Rui X, Wang C, Si D, Hui X, Li K, Wen H, Li W, Liu J. J. Org. Chem. 2021; 86: 6622
    • 19d Müller T, Ackermann L. Chem. Eur. J. 2016; 22: 14151
    • 19e Ma W, Kaplaneris N, Fang X, Gu L, Mei R, Ackermann L. Org. Chem. Front. 2020; 7: 1022
    • 20a Cavallito CJ, Bailey JH. J. Am. Chem. Soc. 1944; 66: 1950
    • 20b Small LD, Bailey JH, Cavallito CJ. J. Am. Chem. Soc. 1947; 69: 1710
    • 20c Block E. Angew. Chem. Int. Ed. 1992; 31: 1135
    • 20d Jacob CA. Nat. Prod. Rep. 2006; 23: 851
    • 20e Waag T, Gelhaus C, Rath J, Stich A, Leippe M, Schirmeister T. Bioorg. Med. Chem. Lett. 2010; 20: 5541
    • 20f Kyung KH. Curr. Opin. Biotechnol. 2012; 23: 142
    • 20g Borlinghaus J, Albrecht F, Gruhlke MC. H, Nwachukwu ID, Slusarenko AJ. Molecules 2014; 19: 12591
    • 21a Lin C, Li D, Wang B, Yao J, Zhang Y. Org. Lett. 2015; 17: 1328
    • 21b Yan S.-Y, Liu Y.-J, Liu B, Liu Y.-H, Shi B.-F. Chem. Commun. 2015; 51: 4069
    • 21c Yang K, Wang Y, Chen X, Kadi AA, Fun H.-K, Sun H, Zhang Y, Lu H. Chem. Commun. 2015; 51: 3582
  • 22 Varma RS, Meshramzt HM, Dahiya R. Synth. Commun. 2000; 30: 1249
    • 23a Nair V, Augustine A. Org. Lett. 2003; 5: 543
    • 23b Chen Q, Huang Y, Wang X, Wu J, Yu G. Org. Biomol. Chem. 2018; 16: 1713
    • 23c Mo Z.-Y, Swaroop TR, Tong W, Zhang Y.-Z, Tang H.-T, Pan Y.-M, Sun H.-B, Chen Z.-F. Green Chem. 2018; 20: 4428
    • 23d Sarkar D, Ghosh MK, Rout N. Tetrahedron Lett. 2018; 59: 2360
    • 23e Zhang X, Cui T, Zhang Y, Gu W, Liu P, Sun P. Adv. Synth. Catal. 2019; 361: 2041