Synlett 2024; 35(03): 357-361
DOI: 10.1055/a-2117-9803
cluster
Organic Chemistry Under Visible Light: Photolytic and Photocatalytic Organic Transformations

Effects of Electron-Donor and Counter-Cation in Photoinduced Deboronative and Decarboxylative Aryl Radical Generation Using Two-Molecule Photoredox Catalysts

Ryoga Hashimoto
,
Toshiki Furutani
,
,
This work was supported by the Asahi Glass Foundation, Continuation Grants for Outstanding Projects.


Abstract

In this study, we investigated the effects of electron-donors and counter-cations on the visible-light-induced deboronation and decarboxylation of arylboronic acid derivatives and benzoic acids using two-molecule photoredox catalysts. Different efficiencies in aryl radical generation were observed upon replacing the electron-donor and counter-cation. The rate of photoinduced deboronation of arylboronic acid derivatives strongly depends on the substituent, whereas the influence of counter-cation (Na+ and K+) was relatively minor. In the case of the benzoate ion derived from benzoic acid, the effect of both substituent and counter-cation decreases because of the complex mechanism. Additionally, the dependence of the oxidation ability of the radical cation on the electron-donor suggests the possibility of roughly estimating the oxidation potentials of the arylborate and benzoate ions.

Supporting Information



Publication History

Received: 31 May 2023

Accepted after revision: 26 June 2023

Accepted Manuscript online:
26 June 2023

Article published online:
17 August 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Hammer SG, Heinrich MR. In Comprehensive Organic Synthesis II, 2nd ed. Elsevier; Amsterdam: 2014: 495-516
    • 1b Wang X, Studer A. Acc. Chem. Res. 2017; 50: 1712
    • 1c Voica A.-F, Mendoza A, Gutekunst WR, Fraga JO, Baran PS. Nat. Chem. 2012; 4: 629
    • 1d Barton DH. R, Lacher B, Zard SZ. Tetrahedron Lett. 1985; 26: 5939
    • 1e Hofmann J, Heinrich MR. Tetrahedron Lett. 2016; 57: 4334

      For the use of aryl halides as a reactant, see:
    • 2a Curran DP, Kim D, Liu HT, Shen W. J. Am. Chem. Soc. 1988; 110: 5900
    • 2b Yanagisawa S, Ueda K, Taniguchi T, Itami K. Org. Lett. 2008; 10: 4673
    • 2c Shirakawa E, Itoh K, Higashino T, Hayashi T. J. Am. Chem. Soc. 2010; 132: 15537
    • 2d Sun CL, Li H, Yu DG, Yu M, Zhou X, Lu XY, Huang K, Zheng SF, Li BJ, Shi ZJ. Nat. Chem. 2010; 2: 1044

      For the use of aryl carboxylic acids as a reactant, see:
    • 3a Kan J, Huang S, Lin J, Zhang M, Su W. Angew. Chem. Int. Ed. 2015; 54: 2199
    • 3b Perry GJ. P, Quibell JM, Panigrahi A, Larrosa I. J. Am. Chem. Soc. 2017; 139: 11527

      For the use of aryl boronic acids as a reactant, see:
    • 4a Demir AS, Findik H. Tetrahedron 2008; 64: 6196
    • 4b Seiple IB, Su S, Rodriguez RA, Gianatassio R, Fujiwara Y, Sobel AL, Baran PS. J. Am. Chem. Soc. 2010; 132: 13194
    • 4c Dickschat A, Studer A. Org. Lett. 2010; 12: 3972
    • 4d Yan G, Yang M, Wu X. Org. Biomol. Chem. 2013; 11: 7999
  • 5 For the use of aryl triflates as a reactant, see: Liu W, Yang X, Gao Y, Li C.-J. J. Am. Chem. Soc. 2017; 139: 8621

    • For the use of aryl diazonium salts as a reactant, see:
    • 6a Galli C. Chem. Rev. 1988; 88: 765
    • 6b Hari DP, Schroll P, König B. J. Am. Chem. Soc. 2012; 134: 2958
    • 7a Ghosh I, Marzo L, Das A, Shaikh R, König B. Acc. Chem. Res. 2016; 49: 1566
    • 7b Majek M, Wangelin AJ. Acc. Chem. Res. 2016; 49: 2316
    • 7c Candish L, Freitag M, Gensch T, Glorius F. Chem. Sci. 2017; 8: 3618
    • 7d Candish L, Teders M, Glorius F. J. Am. Chem. Soc. 2017; 139: 7440
    • 7e Chen TQ, Pedersen PS, Dow NW, Fayad R, Hauke CE, Rosko MC, Danilov EO, Blakemore DC, Dechert-Schmitt A.-M, Knauber T, Castellano FN, MacMillan DW. C. J. Am. Chem. Soc. 2022; 144: 8296
    • 8a Yoshimi Y. J. Photochem. Photobiol., A 2017; 42: 116
    • 8b Yoshimi Y. Photochemistry 2022; 49: 354
    • 9a Iwata Y, Tanaka Y, Kubosaki S, Morita T, Yoshimi Y. Chem. Commun. 2018; 54: 1257
    • 9b Kubosaki S, Takeuchi H, Iwata Y, Tanaka Y, Osaka K, Yamawaki M, Morita T, Yoshimi Y. J. Org. Chem. 2020; 85: 5362
    • 9c Tajimi Y, Nachi Y, Inada R, Yamawaki M, Ohkubo K, Morita T, Yoshimi Y. J. Org. Chem. 2022; 87: 7405
    • 9d Yamawaki M, Hashimoto R, Kawabata Y, Ichihashi M, Nachi Y, Inari R, Sakamoto C, Morita T, Yoshimi Y. Eur. J. Org. Chem. 2022; e202201225
    • 10a Fukuzumi S, Ohkubo K. Org. Biomol. Chem. 2014; 12: 6059
    • 10b Zuo Z, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 5257
  • 11 Handbook of Photochemistry, 3rd ed. Montalti M, Credi A, Prodi L, Gandolfi MT. CRC Press; Boca Raton: 2006
  • 12 Guirado G, Fleming CN, Lingenfelter TG, Williams ML, Zuilhof H, Dinnocenzo JP. J. Am. Chem. Soc. 2004; 126: 14086
  • 13 Mukherjee S, Maji B, Tlahuext-Aca A, Glorius F. J. Am. Chem. Soc. 2016; 138: 16200